Chapter 11

Strip Lines

11-0 INTRODUCTION

Prior to 1965 nearly all microwave equipment utilized coaxial, waveguide, or paral-
lel strip-line circuits. In recent years—with the introduction of monolithic micro-
wave integrated circuits (MMICs)—microstrip lines and coplanar strip lines have
been used extensively, because they provide one free and accessible surface on which
solid-state devices can be placed. In this chapter parallel, coplanar, and shielded
strip lines and microstrip lines, which are shown in Fig. 11-0-1 [1], are described.
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Figure 11-0-1 Schematic diagrams of strip lines.
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11-1 MICROSTRIP LINES

Chapter 3 described and discussed conventional transmission lines in detail. All
electrical and electronic devices with high-power output commonly use conventional
lines, such as coaxial lines or waveguides, for power transmission. However, the mi-
crowave solid-state device is usually fabricated as a semiconducting chip with a vol-
ume on the order of 0.008-0.08 mm®. The method of applying signals to the chips
and extracting output power from them is entirely different from that used for
vacuum-tube devices. Microwave integrated circuits with microstrip lines are com-
monly used with the chips.The microstrip line is also called an open-strip line. In
engineering applications, MKS units have not been universally adopted for use in
designing the microstrip line. In this section we use either English units or MKS
units, depending on the application, for practical purposes.

Modes on microstrip line are only quasi-transverse electric and magnetic
(TEM). Thus the theory of TEM-coupled lines applies only approximately. Radia-
tion loss in microstrip lines is a problem, particularly at such discontinuities as short-
circuit posts, corners, and so on. However, the use of thin, high-diclectric materials
considerably reduces the radiation loss of the open strip. A microstrip line has an ad-
vantage over the balanced-strip line because the open strip has better interconnec-
tion features and easier fabrication. Several researchers have analyzed the circuit of a
microstrip line mounted on an infinite dielectric substrate over an infinite ground
plane [2 to 5]. Numerical analysis of microstrip lines, however, requires large digital
computers, whereas microstrip-line problems can generally be solved by conformal
transformations without requiring complete numerical calculations.

11-1-1 Characteristic Impedance of Microstrip Lines

Microstrip lines are used extensively to interconnect high-speed logic circuits in dig-
ital computers because they can be fabricated by automated techniques and they
provide the required uniform signal paths. Figure 1i-1-1 shows cross sections of a

microstrip line and a wire-over-ground line for purposes of comparison.
In Fig. 11-1-1{a) you can see that the characteristic impedance of a microstrip
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Figure 11-1-1 Cross sections of (a) a microstrip line and {b) a wire-over-ground
line.
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line is a function of the strip-line width, the strip-line thickness, the distance be-
tween the line and the ground plane, and the homogeneous dielectric constant of the
board material. Several different methods for determining the characteristic
impedance of a microstrip line have been developed. The field-equation method was
employed by several authors for calculating an accurate value of the characteristic
impedance [3 to 5]. However, it requires the use of a large digital computer and is
extremely complicated. Another method is to derive the characteristic-impedance
equation of a microstrip line from a well-known equation and make some changes
[2]. This method is called a comparative, or an indirect, method. The well-known
equation of the characteristic impedance of a wire-over-ground transmission line, as
shown in Fig. 11-1-1(b}, is given by

60 4h
20_75,107 forh =d {11-1-1)

where €, = dielectric constant of the ambient medium
h = the height from the center of the wire to the ground plane
d = diameter of the wire

If the effective or equivalent values of the relative dielectric constant €, of the ambi-
ent medium and the diameter d of the wire can be determined for the microstrip
line, the characteristic impedance of the microstrip line can be calculated.

Effective dielectric constant ¢... For a homogeneous dielectric medium,
the propagation-delay time per unit length is

T, = Ve (11-1-2)

where u is the permeability of the medium and ¢ is the permittivity of the medium.
In free space, the propagation-delay time is

Ty = Ve = 3.333 ns/m or 1.016 ns/ft (11-1-3)
where

po = 4 X 1077 H/m, or 3.83 X 1077 H/ft
€ = 8.854 X 107" F/m, or 2.69 X 107" F/ft

In transmission lines used for interconnections, the relative permeability is 1. Con-
sequently, the propagation-delay time for a line in a nonmagnetic medium is

T, = 1.106Ve, ns/ft (11-1-4)

The effective relative dielectric constant for a microstrip line can be related to the
relative dielectric constant of the board material. DiGiacomo and his coworkers dis-
covered an empirical equation for the effective relative dielectric constant of a mi-
crostrip line by measuring the propagation-delay time and the relative dielectric con-
stant of several board materials, such as fiberglass-epoxy and nylon phenolic [6].
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The empirical equation, as shown in Fig. 11-1-2, is expressed as
€. = 0.475¢, + 0.67 {11-1-5)

where ¢, is the relative dielectric constant of the board material and €. is the effec-
tive relative dielectric constant for a microstrip line.
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Figure 11-1-2  Effective dielectric con-
stant as a function of relative dielectric
0 0 1 4 3 4 5 6  constant for a microstrip line. (After
H. R., Kaupp {2]; reprinted by permis-
Refative dielectric constant. e, sion of IEEE, Inc.)

Transformation of a rectangular conductor into an equivalent circular
conductor. The cross-section of a microstrip line is rectangular, so the rectangu-
lar conductor must be transformed into an equivalent circular conductor. Springfield
discovered an empirical equation for the transformation [7]. His equation is

d=0.6Tw (o‘s + é) (11-1-6)

where d = diameter of the wire over ground
w = width of the microstrip line
¢ = thickness of the microstrip line

The limitation of the ratio of thickness to width is between 0.1 and 0.8, as indicated
in Fig. 11-1-3,

Characteristic Impedance equation. Substituting Eq. (11-1-5) for the
dielectric constant and Eq. (11-1-6) for the equivalent diameter in Eq. (11-1-1)
yields

Z 87 In [ 5.98h

= Vo T ia 08w + !] for (h < 0.8w) (11-1-7)
€& . !
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where €, = relative dielectric constant of the board material

h = height from the microstrip line to the ground
w = width of the microstrip line
¢t = thickness of the microstrip line

Equation (11-1-7) is the equation of characteristic impedance for a narrow mi-
crostrip line. The velocity of propagation is

¢ 3 x 108

b= v = 7;— m/s (1i-1-8)

The characteristic impedance for a wide microstrip line was derived by Assadourian
and others [8] and is expressed by
A lu 317 h
Zy=—\—=—F7— for (w > h 11-1-9
T (w > h) (11-1-9)

W €

Limitations of Equation (11-1-7). Most microstrip lines are made from
boards of copper with a thickness of 1.4 or 2.8 mils (1 or 2 ounces of copper per
square foot). The narrowest widths of lines in production are about 0.005-0.010 in.
Line widths are usually less than 0.020 in.; consequently, ratios of thickness to
width of less than 0.1 are uncommon. The straight-line approximation from Eq.
(11-1-6) is an accurate value of characteristic impedance, or the ratio of thickness to
width between 0.1 and 0.8.
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Since the dielectric constant of the materials used does not vary excessively
with frequency, the dielectric constant of a microstrip line can be considered inde-
pendent of frequency. The validity of Eq. (11-1-7) is doubtful for values of dielec-
tric thickness 4 that are greater than 80% of the line width w. Typical values for the
characteristic impedance of a microstrip line vary from 50 {1 to 150 €0, if the values
of the parameters vary from &, = 5.23, 1 = 2.8 mils, w = 10 mils, and 2 = 8 mils
toe = 2.9, ¢t = 2.8 mils, w = 10 mils, and & = 67 mils [2].

Example 11-1-1: Characteristic Impedance of Microstrip Line
A certain microstrip line has the following parameters:

€ = 523

h = 7 mils

t = 2.8 mils
w = 10 mils

Calculate the characteristic impedance Z; of the line.

7= 8 In[ 5.98h ]
Ve + 141 LO8w +¢

Solution

- 87 0 [ 5.98 X 7 ]
V523 + 141 108 x 10+ 28
=45.78 O

11-1-2 Losses in Microstrip Lines

Microstrip transmission lines consisting of a conductive ribbon attached to a dielec-
tric sheet with conductive backing (see Fig. 11-1-4) are widely used in both mi-
crowave and computer technology. Because such lines are easily fabricated by
printed-circuit manufacturing techniques, they have economic and technical merit.
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T Figure 11-1-4 Schematic diagram of a
o= Ground plane microstrip line.
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The characteristic impedance and wave-propagation velocity of a microstrip
line was analyzed in Section 11-1-1. The other characteristic of the microstrip line is
its attenuation. The attenuation constant of the dominant microstrip mode depends
on geometric factors, electrical properties of the substrate and conductors, and on
the frequency. For a nonmagnetic dielectric substrate, two types of losses occur in
the dominant microstrip mode: (1) dielectric loss in the substrate and (2) ohmic skin
loss in the strip conductor and the ground plane. The sum of these two losses may be
expressed as losses per unit length in terms of an attenuation factor a. From ordi-
nary transmission-line theory, the power carried by a wave traveling in the positive z
direction is given by

(V. [?
Z

P =LVt =YV, e ™) = } L0l g% = po~tc  (11-1-10)

where Py = | V. [?/(2Z,) is the power at z = 0.
The attenuation constant a can be expressed as

= ay + a (11-1-11)

where a; is the diclectric attenuation constant and e is the chmic attenuation con-
stant.

The gradient of power in the z direction in Eq. (11-1-11) can be further ex-
pressed in terms of the power loss per unit length dissipated by the resistance and
the power loss per unit length in the dielectric. That is,

_dP@)

= _i Lyrp s
p dz(zW )

av di *
="} r* L=
() (- E )

= %(RI)I* + %O'V*V
=}IPR+ Vo =P + Ps (11-1-12)

where o is the conductivity of the dielectric substrate board.
Substitution of Eq. (11-1-12) into Eq. (11-1-11) results in

Fy

@y = 2P0 Np/cm (11-1-13}
and
-k Np/em (11-1-14)
%= 3P0 p o

Dielectric losses. As stated in Section 2-5-3, when the conductivity of a
dielectric cannot be neglected, the electric and magnetic fields in the dielectric are
no longer in time phase. In that case the dielectric attenuation constant, as expressed
in Eq. (2-5-20), is given by
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=9 ./# 1
=7 \/; Np/cm (11-1-15)

where ¢ is the conductivity of the dielectric substrate board in U/cm. This dielectric
constant can be expressed in terms of dielectric loss tangent as shown in Eq.
(2-5-17):

tan @ = — (11-1-16)
(e

Then the dielectric attenuation constant is expressed by
oy = % V ue tan @ Np/em (11-1-17

Since the microstrip line is a nonmagnetic mixed dielectric system, the upper dielec-
tric above the microstrip ribbon is air, in which no loss occurs. Welch and Pratt [9]
derived an expression for the attenuation constant of a dielectric substrate. Later on,
Pucel and his coworkers {10] modified Welch's equation [9). The result is

qo f Ho
= 4.34 =
da i; €0

Ere
= 1.634 x 10° \q/"_ dB/em (11-1-18)
€Ere

In Eq. (11-1-18) the conversion factor of 1 Np = 8.686 dB is used, €. is the effec-
tive dielectric constant of the substrate, as expressed in Eq. (11-1-5), and ¢ denotes
the dielectric filling factor, defined by Wheeler (3] as

€. — |
1= (11-1-19)
We usually express the attenuation constant per wavelength as
@y =273 (ﬁ) m—:f dB/A, (11-1-20)
e £

where A, = \;ﬂ— and Ag is the wavelength in free space, or
€

C
A, = —— and ¢ is the velocity of light in vacuum.
" Ve youte

If the loss tangent, tan @, is independent of frequency, the dielectric attenua-
tion per wavelength is also independent of frequency. Moreover, if the substrate
conductivity is independent of frequency, as for a semiconductor, the dielectric at-
tenuation per unit is also independent of frequency. Since ¢ is a function of € and
w/h, the filling factors for the loss tangent ge,/€.. and for the conductivity q/\/;
are also functions of these quantities. Figure 11-1-5 shows the loss-tangent filling
factor against w/h for a range of dielectric constants suitable for microwave inte-
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grated circuits. For most practical purposes, this factor is considered to be 1. Figure
11-1-6 illustrates the product ayp against w/h for two semiconducting substrates, sil-
icon and gallium arsenide, that are used for integrated microwave circuits. For de-
sign purposes, the conductivity filling factor, which exhibits only a mild dependence
on w/h, can be ignored.

Ohmic losses. In a microstrip line over a low-loss dielectric substrate, the
predominant sources of losses at microwave frequencies are the nonperfect conduc-
tors. The current density in the conductors of a microstrip line is concentrated in a
sheet that is approximately a skin depth thick inside the conductor surface and ex-
posed to the electric field. Both the strip conductor thickness and the ground plane
thickness are assumed to be at least three or four skin depths thick. The current den-
sity in the strip conductor and the ground conductor is not uniform in the transverse
plane. The microstrip conductor contributes the major part of the ohmic loss. A dia-
gram of the current density J for a microstrip line is shown in Fig. 13-1-7.

Because of mathematical complexity, exact expressions for the current density
of a microstrip line with nonzero thickness have never been derived [10]. Several re-
searchers [8] have assumed, for simplicity, that the current distribution is uniform
and equal to //w in both conductors and confined to the region |x| < w/2. With
this assumption, the conducting attenuation constant of a wide microstrip line is

given by

8.686R, w
—-W dB/cm for A >1 (11-1-21)

o,
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Figure 11-1-6 Dielectric attenuation factor of microstrip as a function of w/h for
silicon and gallium arsenide substrates. (After R. A. Pucel et al. [10]: reprinted by
permission of IEEE, Inc.)
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where R, = \/ ﬂ is the surface skin resistance in {}/square,
o

1
RS = —
50 5 }/square

f 1
6= is the skin depth in cm
wfuo P

For a narrow microstrip line with w/h < 1, however, Eq. (11-1-21} is not ap-
plicable. The reason is that the current distribution in the conductor is not uniform,
as assumed. Pucel and his coworkers [10, 11] derived the following three formulas
from the results of Wheeler's work [3]:
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w 1
for — = — -1-
orh o (11-1-22)
a.Zoh  8.68 w'\? h h ( 2h t)
—_— —_— + —_— — — — —
R. 27 [l (4h) ][l w T\l h
w
foriq—r n =2 (11-1-23)
and
a. Zoh _ 8.68 w' w'/(mh)
&s lv—r+ In [21:' (w_’+094)]}2 h —+094
h ‘Ao 7 2h
X [l +£,+—,(ln&—i)] for2 <= {11-1-24)
W t h
where a, is expressed in dB/cm and
e = 2718
w' =w+ Aw (11-1-25)
H 4w 2w
Aw = w(lnT+ l) for; <55 > (11-1-26)
t 2h w T
Aw = — (ln - + l) for; = 3 (11-1-27)

The values of a. obtained from solving Eqs. (11-1-22) through (11-1-24) are plotted
in Fig. 11-1-8. For purposes of comparison, values of «. based on Assadourian and

Rimai's Eq. (11-1-21}) are also shown.

Radiation losses. In addition to the conductor and dielectric losses, mi-
crostrip line also has radiation losses. The radiation loss depends on the substrate’s
thickness and dielectric constant, as well as its geometry. Lewin [12] has calculated
the radiation loss for several discontinuities using the following approximations:

1. TEM transmission

2. Uniform dielectric in the neighborhood of the strip, equal in magnitude to an
effective value

3. Neglect of radiation from the transverse electric {TE) field component parallel
to the strip

4. Substrate thickness much less than the free-space wavelength
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Figure 11-1-8 Theoretical conductor attenuation factor of microstrip as a function
of w/h. (After R. A. Pucel et al. [10]; reprinted by permission of IEEE, Inc.)

Lewin’s results show that the ratio of radiated power to total dissipated power for an
open-circuited microstrip line is

Pad
2

2
= 240m” (Ih;) %‘0) (11-1-28)

where F (¢,.) is a radiation factor given by

ere + l ere - 1 v 6,-9 + l
F(e!’f) = - Famml ll'l — 11'1‘29
Eﬂ’ 26" 6,., Erf - l ( )

in which €. is the effective dielectric constant and A = ¢/ fis the free-space wave-
length.

The radiation factor decreases with increasing substrate dielectric constant. So,
alternatively, Eq. (11-1-28) can be expressed as

Pag
P,

(11-1-30)

INTES
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where R, is the radiation resistance of an open-circuited microstrip and is given by
h 2
R, = 240772 (:\_) F(fre) (1 1-1 '31)
0

The ratio of the radiation resistance R. to the real part of the characteristic
impedance Z, of the microstrip line is equal to a small fraction of the power radiated
from a single open-circuit discontinuity. In view of Eq. (11-1-28), the radiation loss
decreases when the characteristic impedance increases. For lower dielectric-constant
substrates, radiation is significant at higher impedance levels. For higher dielectric-
constant substrates, radiation becomes significant until very low impedance levels
are reached.

11.1.3 Quality Factor @ of Microstrip Lines

Many microwave integrated circuits require very high quality resonant circuits. The
quality factor Q of a microstrip line is very high, but it is limited by the radiation
losses of the substrates and with low dielectric constant. Recall that for uniform cur-
rent distribution in the microstrip line, the ohmic attenuation constant of a wide mi-
crostrip line is given by Eq. (11-1-21) as

@ = 8.686R, dB/cm
ZuW

and that the characteristic impedance of a wide microstrip line, as shown in Eq.

(11-1-9), is
b e
L= Ve Ve, W 0
The wavelength in the microstrip line is
30
A, = cm (11-1-32)

where f is the frequency in GHz.
Since Q. is related to the conductor attenuation constant by

27.3
0. = o (11-1-33)
where a. is in dB/A,, Q. of a wide microstrip line is expressed as
Qc = 395 (Rﬁ) fGHz (l 1-1-34)

where % is measured in cm and R, is expressed as

R. = 1 /_""'_fﬂ = 27 A /@ }/square. (11-1-35)
T o
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Finally, the quality factor Q. of a wide microstrip line is
Q. = 0.63h 'V afan: (11-1-36)

where a is the conductivity of the dielectric substrate board in U/m.
For a copper strip, @ = 5.8 X 10’ U /m and Q. becomes

Qc. = 47800V fouz (11-1-37

For 25-mil alumina at 10 GHz, the maximum Q. achievable from wide microstrip
lines is 954 [13].
Similarly, a quality factor Q0 is related to the dielectric attenvation constant:

_n3

d (11-1-38)
&y
where oy is in dB/A, .
Substituting Eq. {11-1-20) into Eq. (11-1-38) yields
Ao 1
= = 11-1-39
Qe Ve, tan@ tan @ ( )

where Ao is the free-space wavelength in cm. Note that the Q. for the dielectric at-
tenuation constant of a microstrip line is approximately the reciprocal of the dielec-
tric loss tangent @ and is relatively constant with frequency.

11-2 PARALLEL STRIP LINES

A parallel strip line consists of two perfectly parallel strips separated by a perfect
dielectric slab of uniform thickness, as shown in Fig. 11-2-1. The plate width is w,
the separation distance is d, and the relative dielectric constant of the slab is €.

Figure 11-2-1 Schematic diagram of a
parallel strip line.




486 Strip Lines Chap. 11
11-2-1 Distributed Parameters

In a microwave integrated circuit a strip line can be easily fabricated on a dielectric
substrate by using printed-circuit techniques. A parallel stripline is similar to a
two-conductor transmission line, so it can support a quasi-TEM mode. Consider a
TEM-mode wave propagating in the positive z direction in a lossless strip line
(R = G = 0). The electric field is in the y direction, and the magnetic field is in the
x direction. If the width w is much larger than the separation distance d, the fringing
capacitance is negligible. Thus the equation for the inductance along the two con-
ducting strips can be written as

ped
W

L= H/m (11-2-1)

where u. is the permeability of the conductor. The capacitance between the two
conducting strips can be expressed as

C= % F/m (11-2-2)

where &, is the permittivity of the dielectric slab.

If the two parallel strips have some surface resistance and the dielectric sub-
strate has some shunt conductance, however, the parallel stripline would have some
losses. The series resistance for both strips is given by

p=R_2 (w0 (11-2-3)
" w 7.

where R, = Vizmfu.)/o- is the conductor surface resistance in /square and o. is
the conductor conductivity in U/m. The shunt conductance of the strip line is

G = % U/m (11-2-4)

where o, is the conductivity of the dielectric substrate.
11-2.2 Characteristic iImpedance

The characteristic impedance of a lossless parallel strip line is

zo=\/%=ff— pa 37T d s d (11-2-5)

w € €rq W

The phase velocity along a parallel strip line is
| 1 c

W
v = — = e—_———
B VIC Ve Ve

The characteristic impedance of a lossy parallel strip line at microwave frequencies
(R <€ wL and G <€ w() can be approximated as

m/s for . = po (11-2-6)
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Zo = \/E—; 3.8 trw s d (11-2-7)

Eri w
11-2-3 AttenuationlLosses

The propagation constant of a parallel strip line at microwave frequencies can be ex-
pressed by

y = VR + juLXG + juC)  forR <wl and G < wC

! L
=§(R\/%+G\/;) + joVLC (11-2-8)

Thus the attenuation and phase constants are

i1/ fc L
« =§(R\/g+ G\/;) Np/m (11-2-9)

B=wVLC mnd/m (11-2-10)

Substitution of the distributed parameters of a parallel strip line into Eq.(11-2-9)
yields the attenuation constants for the conductor and dielectric losses:

_lpyfE o ot
a = 2R I iV . Np/m {11-2-11)

B \ﬁ _ 1880,
“=36\z=2 Ne/m (11-2-12)

Example 11-2-1:  Characteristics of a Parallel Strip Line

A lossless parallel strip line has a conducting strip width w. The substrate dielectric
separating the two conducting strips has a relative dielectric constant €, of 6 (beryllia
or beryllium oxide BeO) and a thickness d of 4 mm.

and

and

Calculate:

a. The required width w of the conducting strip in order to have a characteristic
impedance of 50 )

b. The strip-line capacitance

¢. The strip-line inductance

d. The phase velocity of the wave in the paralle] strip line

Solution

a. From Eq. (11-2-5) the width of the conducting strip is
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377 d _ 3774 % 107

w:——_—.——
Ve.Zo V6 50
= 1231 x 107 m

b. The strip-line capacitance is

C= ew _ 8.854 X 10712 x 6 x 12.31 x 101°°
d 4 x 1073

= 163.50 pF/m

¢. The strip-fine inductance is

d 47 x 1077 x4 x107?

L= T zaxw
= 0.4t uH/m
d. The phase velocity is
¢ _3x 108
tp = \/;; =~ Ve
= 1.22 x 10®* m/s

11.3 COPLANAR STRIP LINES

A coplanar trip line consists of two conducting strips on one substrate surface with
one strip grounded, as shown in Fig. 11-3-1. The coplanar strip line has advantages
over the conventional parallel strip line (see Section 11-2) because its two strips are
on the same substrate surface for convenient connections. In microwave integrated
circuits (MICs) the wire bonds have always presented reliability and reproducibility
problems. The coplanar strip lines eliminate the difficulties involved in connecting
the shunt elements between the hot and ground strips. As a result, reliability is in-
creased, reproducibility is enhanced, and production cost is decreased.
The characteristic impedance of a coplanar strip lin¢ is
= i;”g {11-3-1)
I

where I, is the total peak current in one strip and P, is the average power flowing in
the positive z direction. The average flowing power can be expressed as

Pa\fg = %RC IJ (E X H*)‘l.l; dx dy (11_3_2)
where E, =electric field intensity in the positive x direction

H, =magnetic field intensity in the positive y direction
* =conjugate
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Figure 11-3-1 Schematic diagram of a
z coplanar strip line.

Example 11-3-1: Characteristic Inpedance of a Coplanar Strip Line

A coplanar strip line carries an average power of 250 mW and a peak current of
100 mA. Determine the characteristic impedance of the coplanar strip line.

Solution From Eq. (11-3-1), the characteristic impedance of the coplanar strip line is

2 x 250 x 107°

= o xioy - P8

11-4 SHIELDED STRIP LINES

A partially shielded strip line has its strip conductor embedded in a dielectric
medium, and its top and bottom ground planes have no connection, as shown in Fig.
11-4-1.

LTSS ST LTSS TS S LSS S LSS SLS VAL

j_|-<- w|

ez
EF‘
Figure 11-4-1 Partially shiclded strip

AL LLSLAL LTI LS LI TSI SLIIAS LA SIS line.

The characteristic impedance for a wide strip (w/d > 0.35) [14] is

_94.15 (w c \
Zo= Ve, (dK * 8.354e,) (11-4-1)

1
1 —¢/d
¢t = the strip thickness
d = the distance between the two ground planes

Cr= 8. 8546”[2[(] (K +1)— (K - 1) In(K?— 1)) and is the fringe capa-

c1tance in pF/m

where K =
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Figure 11-4-2 shows the characteristic impedance Zo for a partially shielded
strip line, with the ¢/d radio as a parameter.
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Figure 11-4-2 Characteristic impedance Zq of a partially shielded strip line with
the ¢/d ratio as a parameter. (After §. Cohn [14]: reprinted by permission of IEEE,
Inc.}

Example 11-4-1: Characteristic Impedance of a Shielded Strip Line
A shielded strip line has the following parameters:

Dielectric constant of the insulator

{polystyrene): € = 2.56
Strip width: w = 25 mils
Strip thickness: ¢t = 14 mils
Shield depth: d = 70 mils
Calculate:

a. The X factor
b. The fringe capacitance
¢. The characteristic impedance of the line.
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Solution

a. Using Eq. (11-4-1), the K factor is obtained:

o= (3 - () =

b. From Eq. (11-4-1), the fringe capacitance is

_ 8.854 X 2.56 _ _ )
Cr= =S — 2 X 125 (125 + 1) = (125 - DIn (1.25" ~ 1]
= 15.61 pF/m.
¢. The characteristic impedance from Eq. {(11-4-1} is
94.15 (25 15.61 -1
= ={1. o —_—
/2.56 [70(1 25) 8.854 X 2‘56]
= 50.290)
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PROBLEMS

Microstrip Lines

11-1. A microstrip line has the following parameters:

€ = 5.23 and is the relative dielectric constant of the fiberglass board material

h = 0.8 mils
t = 2.8 mils
w = [0 mils

Write a FORTRAN program to complete the characteristic impedance Zo of the line.
Use a READ statement to read in the input values, the F10.5 format for numerical
outputs, and the Hollerith format for character outputs.

11-2. Since modes on microstrip lines are only quasi-transverse electric and magnetic
{TEM), the theory of TEM-coupled lines applies only approximately. From the basic
theory of a lossless line, show that the inductance L and capacitance C of a microstrip

line are
LB _ Ve
v ¢
and
_ 1 Ve
Zov  Zyc
where Z; = characteristic impedance of the microstrip line

v = wave velocity in the microstrip line
¢ = 3 % 10° m/s, the velocity of light in vacuum
¢, = relative dielectric constant of the board material

11-3. A microstrip line is constructed of a perfect conductor and a lossless dielectric board.
The relative dielectric constant of the fiberglass-epoxy board is 5.23, and the line
characteristic impedance is 50 (). Calculate the line inductance and the line capaci-
tance,

11-4. A microstrip line is constructed of a copper conductor and nylon phenolic board. The
relative dielectric constant of the board material is 4.19, measured at 25 GHz, and its
thickness is 0.4836 mm (19 mils). The line width is 0.633 mm (25 mils), and the line
thickness is 0.071 mm (2.8 mils). Calculate the

I
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. Characteristic impedance Z, of the microstrip line

. Dielectric filling factor g

Dielectric attenuation constant oy

. Surface skin resistivity R, of the copper conductor at 23 GHz
Conductor attenuation constant e,

11-5. A microstrip line is made of a copper conductor 0.254 mm {10 mils} wide on a G-10
fiberglass-epoxy board 0.20 mm (8 mils) in height. The relative dielectric constant €.
of the board material is 4.8, measured at 25 GHz. The microstrip line 0.035-mm
(1.4 mils) thick is to be used for 10 GHz. Determine the
a. Characteristic impedance Z, of the microstrip line
b. Surface resistivity R, of the copper conductor
¢. Conductor attenuation constant ¢,
d. Dielectric attenuation constant o
e. Quality factors Q. and Q.

arop

®

Parallel Striplines
11-6. A gold parallel stripline has the following parameters:

Relative dielectric constant of teflon: €= 2.1

Strip width: w = 26 mm
Separation distance: d=>5mm
Conductivity of gold: o. = 4.1 x 10/ U/m
Frequency: f = 10GHz

Determine the

a. Surface resistance of the gold strip

b. Characteristic impedance of the strip line
c. Phase velocity

11-7. A gold parallel strip line has the following parameters:

Relative dielectric constant of polyethylene: €q = 2.25
Strip width: w = 25 mm
Separation distance: d=5mm

Calculate the

a. Characteristic impedance of the strip line
b, Strip-line capacitance

¢. Strip-line inductance

d. Phase velocity

Coplanar Strip Lines
11-8. A 50-{) coplanar strip line has the following parameters:
Relative dielectric constant of alumina: €q = 10

Strip width: w = 4 mm
Strip thickness: t =1 mm
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TEM-mode field intensities: E, = 3.16 x 10 sin (%) piBr
H, = 63.20 sin (ﬂ) e
L

Find the
a. Average power flow
b. Peak current in one strip

11-9. A shielded stripline has the following parameters:

Relative diclectric constant of the

insulator polyethylene: €4 =225
Strip width: w = 2 mm
Strip thickness: t = 0.5 mm
Shield depth: 4 =4 mm

Calculate the
a. K factor
b. Fringe capacitance
¢. Characteristic impedance
11-10. A shielded strip line is made of a gold strip in a polystyrene dielectric insulator and
has the following parameters;

Relative dielectric constant of

polystyrene: €q = 2.56
Strip width: w = 0.7 mm
Strip thickness: t = 1.4 mm
Shield depth: d=3.5mm

Determine the

a. X factor

b. Fringe capacitance

¢. Characteristic impedance
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This chapter includes the following topics:

Basic parameters Radio links (Friis formula)
Patterns Field from oscillating dipole
Beam area

Antenna field zones

Shape-impedance consideration
Polarization

Polarization ellipse and Poincare sphere
Signal-to-noise ratio

Antenna temperature

Antenna impedance

Radiation intensity
Beam efficiency
Directivity and gain
Directivity and resolution

Antenna apertures and radar cross-section
Effective height
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2-1 Introduction

The world of antennas encompasses the understanding of the meaning, purpose, parameters and types of
" antennas. It also spells the theoretical and practical aspects of antennas and their selection criterion for
specific applications and range of operations.

An antenna (aerial) is considered as a region of transition between a transmission line and space. Antennas
radiate/couple/concentrate/direct electromagnetic energy in the desired/assigned direction. An antenna may
be isotropic (also called omni-directional/omni/non-directional) or anisotropic (directional).

There is no hard and fast rule for selecting an antenna for a particular frequency range or application. While
choosing an antenna, many electrical, mechanical and structural aspects are to be taken into account. These
aspects include radiation pattern, gain, efficiency, impedance, frequency characteristics, shape, size, weight
and look of antennas, and above all their economic viability.

In some applications (e.g., radars, mobiles), the same antenna may be used for transmission and reception.
while in others (e.g., radio and television) transmission and reception of signals require separate antennas
which differ in shape and size and other characteristics. In principle, there is no difference in selection factors
relating to transmitting and receiving antennas. The cost, shape and size, etc., make the main difference. Still.
high efficiency and high gain are the basic requirements for transmitting antennas, whereas low side lobes
and large signal-to-noise ratio are the key selection criteria for receiving antennas.

Antennas may vary in size from the order of a few millimeters (strip antennas in cellular phones) to 1000°s
of feet (dish antennas for astronomical observations). Besides, 1D linear arrays and 2D planar arrays with

lengths or diameters of tens of kilometers operate at the lower edge of the frequency spectrum.
8



2_2 Basic Antenna Parameters

This chapter shall make you well-versed in the language of antennas and comfortable with their culture,

2-2 Basic Antenna Parameters

A radio antenna may be defined as the structure associated with the region of transition between a guided
wave and a free-space wave, or vice versa. Antennas convert electrons to photons, or vice versa.'

Regardless of antenna type, all involve the same basic principle that radiation is produced by accelerated
(or decelerated) charge. The basic equation of radiation may be expressed simply as

IL = Q0 (Ams~") Basic radiation equation (1)

where
I = time-changing current, A s
L =length of current element, m
Q = charge, C .
v = time change of velocity which equals the acceleration of the charge, m s~2

Thus, time-changing current and accelerated charge radiates. For steady-state harmonic variation, we
usually focus on current. For transients or pulses, we focus on charge.? The radiation is perpendicular to the
acceleration, and the radiated power is proportional to the square of 7 L or Q4.

The two-wire transmission line in Fig. 2—1a is connected to a radio-frequency generator (or transmitter).
Along the uniform part of the line, energy is guided as a plane Transverse ElectroMagnetic Mode (TEM) wave
with little loss. The spacing between wires is assumed to be a small fraction of a wavelength. Further on, the
transmission line opens out in a tapered transition. As the separation approaches the order of a wavelength
or more, the wave tends to be radiated so that the opened-out line acts like an antenna which launches a
free-space wave. The currents on the transmission line flow out on the antenna and end there, but the fields
associated with them keep on going.

The study of transmission lines reveals that there would be perfect reflection of a wave if it is open circuited
(OC) or short circuited (SC). In fact, reflections are present even if there is a slight mismatch on account of
termination or imperfections in the transmission path itself. An equivalent circuit of a line with loss can be
drawn in terms of its resistance (R), inductance (L) and capacitance (C) or only in terms of L and C for a
lossless line. The burden of carrying energy (contents) of a propagating wave is shared by electric (E) and
magnetic (H) fields or voltage (v) and current (i) alike. The portions of energy shared by each are accounted
by the well-known relations Cv2/2 (for electric field) and Li?/2 (for magnetic filed).

Consider a wave propagating down a line finding an open-circuited end. As the wave arrives at the OC end,
the current becomes zero and part of the energy shared by magnetic field becomes (mathematically) zero. But
since the energy can neither be created nor destroyed, the only way out is that this burden is also taken up by
the surviving (electric) field. In the expression Cv?/2, the line parameter C (= s A/d) cannot change unless

the area of cross-section ‘A’, the separation ‘d’ or the permittivity of the material occupying the space in the
line configuration gets altered. The change of voltage is the only possibility by which the additional energy
can be carried by the electric field. Thus, the voltage rises at the OC end to enable it to carry the total energy.
The voltage at a point of the OC is now higher than just before a little distance towards the sending end. The

——

I : .
A photon is a quantum unit of clectromagnetic energy equal to Af. where & = Planck’s constant (=6.63 x 10~ J s) and
F= frequency (Hz).

A pulse radiates with a bro

¢ ad bandwidth (the shorter the pulse the broader the bandwidth). A sinusoidal variation results in a narrow

andwidth (theoretically zero at the frequency of the sinusoid if it continues indefinitely).



S

Chapter 2 Antenna Basicg

RECEIVING ANTENNA
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Figure 2-1 (3) Radio (or wireless) communication link with transmittipg antenna and
(b) receiving antenna. The receiving antenna is remote from the transmitting antenna so that

the spherical wave radiated by the transmitting antenna arrives as an essentially plane wave at
the receiving antenna.

current starts flowing back, which amounts to traveling of the current wave towards the sending end. The
voltage wave joins the race as it was earlier, but this time both (current and voltage) waves are the reflected
ones and share their own burdens as before. In fact, the current momentarily remains zero and that too only
at the OC point. Similarly, if the line is short-circuited at the receiving end, the voltage (and hence electric
field) becomes zero and part of energy shared by it is momentarily shared by the magnetic field. This time
the current rises at the receiving end resulting in initiation of a voltage wave followed by a current wave as
discussed above.

In cases of perfect open circuits or perfect short circuits, theoretically there must be perfect reflection.
Since the wave possesses a moment-of-inertia-like property, it will take some time to change its direction.
However small this time may be, some energy is likely to leak in to the space. This process of leakage can be
termed as radiation. This phenomenon is better understood through the example of an open-circuited parallel
wire line. The more is the opening at the end of the line, the more time will be taken by th
its direction and thus more energy will leak in to the space or there will be more coupling of transmission line
to the space. The maximum radiation will, therefore, occur when the two wires at the end are flared to form
a 180° angle. It is this process which has been illustrated in Fig. 2—1a.

The transmitting antenna in Fig. 2-1a is a region of transition from a guided wave op a transmission line to
a free-space wave. The receiving antenna (Fig. 2-1b) is a region of transition from a space wave to a guided
wave on a transmission line. Thus, an antenna is a transition device, or transducer, between q guided wave
and a free-space wave, or vice-versa. The antenna is a device which interfaces a circuit and space.

From the circuit point of view, the antennas appear to the transmission lines as 3 resistance R,, called the
radiation resistance. It is not related to any resistance in the antenna jtse|f but is a resistance coupled from
space to the antenna terminals.

In the transmitting case, the radiated power is absorbed by objects at a distance: trees, buildings, the ground,
the sky, and other antennas. In the receiving case, passive radiation from distant objects or active radiation
from other antennas raises the apparent temperature of R,. For lossless antennas this temperature has nothing
to do with the physical temperature of the antenna itself but js related to the temperature of distant objects
that the antenna is “looking at," as suggested in F 1. 2-2. In this sense, a receiving antennga (and its associated
receiver) may be regarded as a remote-sensing temperature-mcasuring device.
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Figure 2-2 Schematic representation of region of space at temperature T linked via a virtual
transmission line to an antenna.

As pictured schematically in Fig. 2-2, the radiation resistance R, may be thought of as a “virtual” resistance
that does not exist physically but is a quantity coupling the antenna to distant regions of space via a “virtual”
transmission line.'

2-3 Patterns

Both the radiation resistance R,, and its temperature T, are simple scalar quantities. The radiation patterns,
on the other hand, are three-dimensional quantities involving the variation of field or power (proportional to
the field squared) as a function of the spherical coordinates 6 and ¢. Figure 2-3 shows a three-dimensional
field pattern with pattern radius r (from origin to pattern boundary at the dot) proportional to the field intensity
in the direction 6 and ¢. The pattern has its main lobe (maximum radiation) in the z direction (6 = 0) with
minor lobes (side and back) in other directions.

To completely specify the radiation pattern with respect to field intensity and polarization requires three
patterns:

1. The 6 component of the electric field as a function of the angles 6 and ¢ or Eg(#, ¢) (V m™ ') as in
Figs. 2-3 and 2-4.

2. The ¢ component of the electric field as a function of the angles 8 and ¢ or E4(8, ¢) (Vm™!).

3. The phases of these fields as a function of the angles 6 and ¢ or 85(6, ¢) and 84 (6, ¢) (rad or deg).

Any field pattern can be presented in three-dimensional spherical coordinates, as in Fig. 2-3, or by plane
cuts through the main-lobe axis. Two such cuts at right angles, called the principal plane patterns (as in the
xz and yz planes in Fig. 2-3) may be required but if the pattern is symmetrical around the z axis, one cut is
sufficient.

Figures 2—4a and 2-4b are principal plane field and power patterns in polar coordinates. The same pattern
is presented in Fig. 2-4c¢ in rectangular coordinates on a logarithmic, or decibel, scale which gwea the minor
lobe levels in more detail.

"It is to be noted that the radiation resistance, the antenna temperature, and the radiation pattems are functions of the frequency. In
general, the patterns are also functions of the distance at which they are measured, but at distances which are large compared to the size
of the antenna and large compared to the wavelength, the pattern is independent of distance. Usually the patterns of interest are for this
far-field condition.
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Figure 2-3 Three-dimensional field pattern of a directional antenna with maximum radiation
in z-direction at @ = 0°. Most of the radiation is contained in a main beam (or lobe) accompanied
by radiation also in minor lobes (side and back). Between the lobes are nulls where the field
goes to zero. The radiation in any direction is specified by the angles 6 and ¢. The direction of
the point P is at the angles 6 = 30° and ¢ = 85°. This pattern is symmetrical in ¢ and a function
only of 6.

The angular beamwidth at the half-power level or half-power beamwidth (HPBW) (or —3-dB beamwidth)
and the beamwidth between first nulls (FNBW) as shown in Fig. 2-4, are important pattern parameters.

Dividing a field component by its maximum value, we obtain a normalized or relative field pattern which
is a dimensionless number with maximum value of unity. Thus, the normalized field pattern (Fig. 2-44) for
the electric field is given by

Ey (6, ¢)

Normalized field pattern = Ey (8, ¢), = E_(§_¢)__
o\, @)max

(dimensionless) (1

The half-power level occurs at those angles 6 and ¢ for which E¢(6, @), = 1/+/2 = 0.707.
At distances that are large compared to the size of the antenna and large compared to the wavelength

?:nflki‘zgi of the field pattern is independent of distance. Usually the patterns of interest are for this ﬁzrﬁei
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Figure 2-4 Two-dimensional field power and decibel plots of the 3-D antenna pattern of

Fig. 2-3. Taking a slice through the middle of the 3-dimensional pattern of Fig. 2-3 results in the
2-dimensional pattern at (a). It is a field pattern (proportional to the electric field £ in V/m) with
normalized relative field £, (6) = | at & = 0°. The half-power beam width (HPBW) =40° is
measured at the £ = 0.707 level. The pattern at (b) is a power plot of (a) (proportional to £2)
with relative power P, = | at § = 0° and with HPBW = 40° as before and measured at the

P, = 0.5 level. A decibel (dB) plot of (a) is shown at (¢) with HPBW = 40° as before and

measured at the —3 dB level. The first side lobes are shown at the —9 dB and second side
lobes at —13 dB. Decibel plots are useful for showing minor lobe levels.
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Patterns may also be expressed in terms of the power per unit area [or Poynting vector S (0, ¢) ].!
Normalizing this power with respect to its maximum value yields a normalized power pattern as a function of

angle which is a dimensionless number with a maximum value of unity. Thus, the normalized power pattern
(Fig. 2-4b) is given by

Normalized power pattern = P, (6, ¢), = _S56.8) (dimensionless) (2)

S(6, ®)max

where

S(8, ¢) = Poynting vector = [E2(0, ¢) + E; (6, #)]/Zo. W m~?
S(0, $)max = maximum value of S(0, ¢), W m 2
Z, intrinsic impedance of space =376.7 £2

The decibel level is given by
dB = 10log,, P.(6, ¢) (3)

where P,(8, ¢) is as given by (2).
P

EXAMPLE 2-3.1 Half-Power Beamwidth
An antenna has a field pattern
given by

E(@) = cos?6 for 0° <6 < 90°

Find the half-power beamwidth
(HPBW).

B Solution

E(9) at half power = 0.707.
Thus 0.707 = cos’f so
cos# =+/0.707 and 6 = 33°

HPBW = 26 = 66° Ans.

EXAMPLE 2~-3.2 Half-Power Beamwidth and First Null Beamwidth

An ante_nna has a field pattern given by E(#) = cos8 cos 26 for 0° < 6 < 90°. Find (a) the half-power
beamwidth (HPBW) and (b) the beamwidth between first nulls (FNBW).

| y

- . o o ) . L
.Al ugh the ‘Poym‘mg vector, as the name implies, is a vector (with magnitude and direction), we use here its magnitude; its direction
is the far field is radially outward,



2—4 Beam Area (or Beam Solid Angle) Q4

B Solution
(a) E(9) at half power = 0.707. Thus 0.707 = cos 6 cos 20 = 1/+/2.

|
c0s20 = —— 20 =cos~ ' [ ——
V2cos6 (\/icost?) W
1

6 = —cos”! ( : )
2 V2 cos

Iterating with 6’ = 0 as a first guess, § = 22.5°. Setting 6’ = 22.5°,

6 = 20.03°, etc., until after next iteration § = 0’ = 20.47° = 20.5°
and

HPBW = 26 =41° Ans. (a)
(b) 0 = cos B cos 20, so O = 45° and
FNBW = 26 = 90° Ans. (b)

Although the radiation pattern characteristics of an antenna involve three-dimensional vector fields for a
full representation, several simple single-valued scalar quantities can provide the information required for
many engineering applications. These are:

Half-power beamwidth, HPBW
Beam area, Q4

Beam efficiency, & y

Directivity D or gain G
Effective aperture A,

The half-power beamwidth was discussed above. The others follow.

2-4 Beam Area (or Beam Solid Angle) 2,

In polar two-dimensional coordinates an incremental area dA4 on the surface of a sphere is the product of the

length r d6 in the 6 direction (latitude) and r sin 8 d¢ in the ¢ direction (longitude), as shown in Fig. 2-5.
Thus,

dA = (rdf)(rsinfd¢) = r2 dQ

(1)
where

dt = solid angle expressed in steradians (sr) or square degrees(®)
d2 = solid angle subtended by the area d A

The area of the strip of width rd@ extending around the sphere at a constant angle ¢ is given by
(27 r sin6)(r d6). Integrating this for  values from 0 to 7 yields the area of the sphere. Thus,

Area of sphere = 272 f
0

where 47 = solid angle subtended by a sphere, sr

m

sinf df = ZNrZI—COSGIg = 4mr? (2)

4
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Figure 2-5 Polar coordinates showing incremental solid angle d4 = r* d  on the surface of
a sphere of radius » where d Q = solid angle subtended by the area dA. (b) Antenna power
pattern and its equivalent solid angle or beam area Qy.

Thus,
1 steradian = 1 sr = (solid angle of sphere)/(47)

2
= lrad? = B (deg?) = 3282.8064 s d
- == g ) = : quare degrees (3)

Therefore,
47 steradians = 3282.8064 x 41 = 41,252.96 = 41,253 square degrees = 41,253"
= solid angle in a sphere (4)

The beam area or beam solid angle or 24 of an antenna (Fig. 2-5b) is given by the integral of the normalized
power pattern over a sphere (47 sr)

¢=2r pO=n
Q24 = P,(0, ¢)sin6db d
and
2 =[fp*r(9'¢)d9 (sr) Beam area (5b)
4n

where dQ = sing d¢ d¢, sr.
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The beam area Q4 is the solid angle through which all of the power radiated by the antenna would

stream if P(6,¢) maintained its maximum value over 24 and was zero elsewhere. Thus the power
radiated = P(6, ¢)Q2, watts.

The beam area of an antenna can often be described approximately in terms of the angles subtended by
the half-power points of the main lobe in the two principal planes. Thus,

rBeam area = Q4 = Bypdup (sr)

(6)

where Oup and ¢up are the half-power beamwidths (HPBW) in the two principal planes, minor lobes being
neglected.

EXAMPLE 2-4.1 Solid Angle of Area in Square Degrees

Find the number of square degrees in the solid angle 2 on a spherical surface that is between § = 20° and
6 = 40° (or 70° and 50° north latitude) and between ¢ = 30° and ¢ = 70° (30° and 70° east longitude).
E Solution
From (1)

70° 40° 40 i
Q= d sinf df = —2m[—cosf
| [mo ¥ Lo 360 c0s%ho

= 0.2227 x 0.173 = 0.121 steradians (sr)

= 0.121 x 3283 = 397 square degrees = 397"  Ans.

The solid angle Q shown in the sketch may
be approximated as the product of two angles
AO =20° and A¢ = 40°sin30° = 40° x 0.5 = 20°
where 30° is the median @ value of latitude. Thus,
Q = A6 A¢p = 20° x 20° = 400°, which is within
3/4% of the answer given above.

EXAMPLE 2-4.2 Beam Area 2, of Antenna with cos’d Pattern

An antenna has a field pattern given by E(0) = cos? @ for 0° < @ < 90°. This is the same pattern of
Example 2-3.1. Find the beam area of this pattern.

B Solution

From (5)
2n pw

szA:f f cos*@sinf db do
0 0
ool 227 e A
= — — e} = — = |.26sr ns.

2:![25005 ]u 5

From (6) an approximate relation for the beam arca

24 = Oypup (sr)
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where Oyp and ¢yp are the half-power beamwidths (HPBW) in the two principal planes From
Example 2-3.1. Op = ¢pp = 66°, s0

Q1 = Oupdup = 66° = 4356 sq deg = 4356°
From (3). one square radian = 3283 sq deg so
Beam area Q4 = 4356/3282 = 1.33 sr Approx. Ans.

a difference of 6%.

2-5 Radiation Intensity

The power radiated from an antenna per unit solid angle is called the radiation intensity U (watts PET Steradiap
Or per square degree). The normalized power pattern of the previous section can alsc_) be expressed In terms of
this parameter as the ratio of the radiation intensity U (6, ¢), as a function of angle, to its maximum value. Thys

U@.¢) _ S6.9) i

UO.D)max SO, ®)max

Whereas the Poynting vector S depends on the distance from the antenna (vaf'yin_g inversely as the square of
the distance), the radiation intensity U is independent of the distance, assuming in both cases that we are in
the far field of the antenna (see Sec. 2-13).

Pn(6.0) =

2-6 Beam Efficiency

The (total) beam area Q24 (or beam solid angle) consists of the main beam area (or solid angle) Q) plus the
minor-lobe area (or solid angle) 2,,,.' Thus,

Q4 =y + (1)

The ratio of the main beam area to the (total) beam area is called the (main) beam efficiency &y. Thus,

Q
Beam efficiency = ey = Q—M— (dimensionless) (2)
A

The ratio of the minor-lobe area (2,,) to the (total) beam area is called the stray factor. Thus,

Q
Em = Q—: = stray factor (3)

It follows that

2-7 Directivity D and Gain G

The directivity D and the gain G are probably the most important parameters of an antenna. 3
The directivity of an antenna is equal to the ratio of the maximum power density P (6, ¢)max (wattsm) ¥
its average value over a sphere as observed in the far field of an antenna. Thus

I - 2 - o . .
If the main beam is not bounded by a deep null, its extent becomes an arbitrary act of judgment.
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_ P(6, @) max Di L
= -—Wa—v— trectivity from pattern (1)
The directivity is a dimensionless ratio s A
The average power density over a sphere is given by
l ¢=27 O=nm
PO.¢lay = — P, i
a s AP 0, ¢)sinO do d¢
1 (2)
= 4_1;/:[ P6,¢)a@  (ws )
4
Therefore, the directivity
P,
s @) max _ 1 3)
(1/4m) ff P©,9)dQ  (1/4rm) jf[f’(ﬁ_ )/ P (6, 9)max] dQ
4x 4n
and
4 4
D= = Directivity from beam area 24 (4)
ff P8, ¢)d A
4n

where P, (0, ) d2 = P(0, ¢)/P(6, ¢)max = normalized power pattern
Thus, the directivity is the ratio of the area of a sphere (47 sr) to the beam area 4 of the antenna (Fig.2-5b).
The smaller the beam area, the larger the directivity D. For an antenna that radiates over only half a sphere
the beam area Q4 = 27 sr (Fig. 2-6) and the directivity is
D= ] =2 (= 3.01 dBi) (5)
2
where dBi = decibels over isotropic

Note that the idealized isotropic antenna (24 = 4 sr) has the lowest possible directivity D = 1. All actual

antennas have directivities greater than 1 (D > 1). The simple short dipole has a beam area Q4 = 2.677 sr
and a directivity D = 1.5 (= 1.76 dBi).

6=0 =0
Hemispheric
P
9 /\
\Iﬁfpic
(a) (b) (c)

Figure 2-g Hemispheric power patterns, (&) and (b), and comparison with isotropic pattern (0).
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antity which is less than the di‘rectivity D due to ohmi,
qu these losses involve power feq to the

nsmitting, | _
A mismatch in feeding the antenna cap e
efficiency factor. Thus,

The gain G of an antenna is an actual or realized
losses in the antenna or its radome (if it is enclosed). In tra
antenna which is not radiated but heats the antenna structure.

reduce the gain. The ratio of the gain to the directivity i the antennd
(6)

G =kD
where k = efficiency factor (0 < k < 1), dimensionless. ; I -
# k1) . , ways less than D, w ;
In many well-designed antennas, k may be close to unity. In practice, G is alway g

maximum idealized value.
Gain can be measured by comparin
a reference antenna of known gain, such as a short dipole. T

g the maximum power density of the Antenna Under Test (AUT) g,

hus,

(7)

Gain = G = _Prax(AUT) G (ref. ant.)
Prax (ref. ant.)

If the half-power beamwidths of an antenna are known, its directivity

_ 41,2530 (8)
OipPiip
where
41,253° = number of square degrees in sphere = 47 (180/ n)? square degrees )
6ip = half — power beamwidth in one principal plane
¢5p = half — power beamwidth in other principal plane
Since (8) neglects minor lobes, a better approximation is a
40,0007 ; Y
s Approximate directivity (9)
OrpPhp

If the antenna has a main half-power beamwidth (HPBW) = 20° in both principal planes, its directivity

40,000°
- (10)

4000
which means that the antenna radiates 100 times the power in the direction of the main beam as a nondirectional,

= 100 or 20 dBt1

isotropic antenna.
The directivity-beamwidth product 40,0007 is a rough approximation. For certain types of antennas other

values may be more accurate, as discussed in later chapters.
If an antenna has a main lobe with both half-power beamwidths (HPBWs) = 20°, its directivity from (8)

is approximately

p = 4rGn) | 41.253(deg?) _ 41,253(deg?)
Q4 (sr) Oapdip  20° x 20°

= 103 = 20 dBi (dB above isotropic)

whic i : v o
time:ar:f::::;haiti’e é:gtﬁnna radiates a power in the direction of the main-lobe maximum which is about 100
ould be radiated by a nondirectional (isotropic) antenna for the same power input.
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EXAMPLE 2-7.1 Gain of Directional Antenna with Three-Dimensional Field

Pattern of Fig. 2-3
The antenna is a lossless end-fire array of 10 isotropic point sources spaced 1/4 and operating with

increased directivity. See Sec. 5-13. The normalized ficld pattern (see Fig. 2 4a) is

1 bl
E,,:sin(l)w (11)
2n ) sin(yr/2)
where

¥ =d(cosgp — 1) — 2

n
dr — :-'Tf.-"f:

n 10

Since the antenna is lossless. gain = directivity.

(@) Calculate the gain G.
(b)  Calculate the gain from the approximate equation (9).
(c) What is the difference?

E Solution
(a) From (4)

Gain G = do de (12)

- 4n
ff Pn (6, ¢) dS2
4

where P, (6. ¢) = normalized power pattern = [E, (6, ¢))?.
Introducing the given parameters into (11) and (12),

G=1780r12.5dB Ans. (a) .
(b) From (9) and HPBW = 40° in Fig. 24,
40,0009
(40°)2

(c) AG =25/17.8=1.400r1.5dB Ans. (c)
The difference is mostly due to the large minor lobes of the pattern. Changing the formula to

=250r 14dB Ans. (b)

Gain =

Gain= ——— =17.50r 12.4 dB

the gain is much closer to that in (a). This approximation is considered more appropriate for end-fire
arrays with increased directivity.

—

EXAMPLE 2-7.2 Directivity
The nonn_alized field pattern of an antenna is given by £, = sin 6 sin ¢, where 8 = zenith angle (measured
from z axis) and ¢ = azimuth angle (measured from x axis) (see figure). E, hasa value only for0 < 6 < 7
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and0 < ¢ = 7 and is zero elsewhere (pattern is unidirectional with maximum in +y direction). Find (a)
the exact directivity, () the approximate directivity from (8), and () the decibel difference.
B Solution z
4 4 s sin 0
D = T o = i =06 Ans. (a) K’T“‘“m
o T 2m/3
sin” 6sin“ ¢ d6 d¢ RN,
JO 0 7 ” ?F/ /-|
41,2530 AT 5
Bl o 5. AT
90° x 90° : <5 & J( i/ 14|
6.0 .
10 log 51 0.7 dB Ans. (¢) x NE NS sin ¢
' Unidirectional sin # and sin ¢
field patterns.

2-8 Directivity and Resolution

The resolution of an antenna may be defined as equal to half the beamwidth between first nulls (FNBW)/2,!
for example, an antenna whose pattern FNBW = 2° has a resolution of 1° and, accordingly, should be able to
distinguish between transmitters on two adjacent satellites in the Clarke geostationary orbit separated by 1°.
Thus, when the antenna beam maximum is aligned with one satellite, the first null coincides with the adjacent
satellite.
Half the beamwidth between first nulls is approximately equal to the half-power beamwidth (HPBW) or
FNBW

5— =HPBW (1)
Thus, from (2-4-6) the product of the FNBW /2 in the two principal planes of the antenna pattern is a measure
of the antenna beam area.? Thus,

(FNBW) (FNBW)
Q4 = (2)
2 0 2 ¢

It then follows that the number N of radio transmitters or point sources of radiation distributed uniformly
over the sky which an antenna can resolve is given approximately by
N 4r
sy 3)
where Q4 = beam arca, Sr
However, from (2-74),

4
D= N (4)

and we may conclude that ideally the number of point sources an antenna can resolve is numerically equal to
the directivity of the antenna or

s

'Often called the Rayleigh resolution. See J. D. Kraus, Radio Astronomy, 2d ed., pp. 6-19, Cygnus-Quasar, 1986.

')2Usually FNBW/2 is slightly greater than the HPBW and (2) is actually a better approximation to Q4 than Q4 = Bypeyp as given by
(2-4-6).
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- Direction of propagation
of plane wave
|

Figure 2-7 Plane wave incident on electromagnetic horn of physical aperture 4.

Equation (4) states that the directivity is equal to the number of beam areas into which the antenna pattern
can subdivide the sky and (5) gives the added significance that the directivity is equal to the number of point
sources in the sky that the antenna can resolve under the assumed ideal conditions of a uniform source

distribution.’

2-9 Antenna Apertures

The concept of aperture is most simply introduced by considering a receiving antenna. Suppose that the
receiving antenna is a rectangular electromagnetic horn immersed in the field of a uniform plane wave as
suggested in Fig. 2-7. Let the Poynting vector, or power density, of the plane wave be S watts per square
meter and the area, or physical aperture of the horn, be A, square meters. If the horn extracts all the power
from the wave over its entire physical aperture, then the total power P absorbed from the wave is

EZ
P=—Z—A,,=SA,, (W) (1)

Thus, the electromagnetic horn may be regarded as having an aperture, the total power it extracts from a

passing wave being proportional to the aperture or area of its mouth.
But the field response of the horn is NOT uniform across the aperture A because E at the sidewalls must
equal zero. Thus, the effective aperture A, of the horn is less than the physical aperture A p as given by

A . ; :
Eap = Zi (dimensionless)  Aperture efficiency ()
p

where ¢,, = aperture efficiency.

For horn and parabolic reflector antenna, aperture efficiencies are commonly in the range of 50 to 80%
(0.5 < €4, < 0.8). Large dipole or patch arrays with uniform field to the edges of the physical aperture ma
attain higher aperture efficiencies approaching 100%. However, to reduce sidelobes fields are co Iy
tapered toward the edges, resulting in reduced aperture efficiency. ‘ S

————

Ui i
tA strictly regular distribution of points on a sphere is only possible for 4, 6, §, |

7 b i A
e ) 2, and 20 points corres &
trahedron, cube, octahedron, icosahedron and dodecahedron. P corresponding to the vertices of a
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Consider now an antenna with an effective aperture A,,
which radiates all of its power in a conical pattern of beam
area 24, as suggested in Fig. 2-8. Assuming a uniform field

E,, over the aperture, the power radiated is A,
E2
P==LA, (W) (3) -
Zo Figure 2-8 Radiation over beam
where Z; = intrinsic impedance of medium (377 2 for air or area 24 from aperture 4,.
vacuum).
Assuming a uniform field E, in the far field at a distance r, the power radiated is also given by
EZ
P==rQ4 (W) (4)
Z

Equating (3) and (4) and noting that E, = E,A./r\ yields the aperture-beam-area relation

A=A Q4 (m?) Aperture-beam-area relation (5)

where € 4 = beam area (sr).
Thus, if A, is known, we can determine Q4 (or vice versa) at a given wavelength. From (5) and (2-7-4)
it follows that the directivity

A,
D =4n =5 Directivity from aperture (6)

All antennas have an effective aperture which can be calculated or measured. Even the hypothetical, idealized
isotropic antenna, for which D = 1, has an effective aperture :
D¥@ 32 5
A, = — = — = (0.0796A (7)
4r 4n :
All lossless antennas must have an effective aperture equal to or greater than this. By reciprocity the effective
aperture of an antenna is the same for receiving and transmitting.

Three expressions have now been given for the directivity D. They are

P(8, )max : ; o s
= ——" (dimensionless) Directivity from pattern (3)

P(9| ¢)av
4r : ; —

D= = (dimensionless)  Directivity from pattern )

A
Ae . :
D =4n =2 (dimensionless) Directivity from aperture (10)

When the antenna is receiving with a load resistance R; matched to the antenna radiation resistancé
Ry (R, = Ry), as much power is reradiated from the antenna as is delivered to the load. This is the condition
of maximum power transfer (antenna assumed lossless).
!n the circuit case of a load matched to a generator, as much power is dissipated in the generator as is
delivered to the load. Thus, for the case of the dipole antenna in Fig. 2-9 we have a load power
Pioua = SA, (W) (1D
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— -

- -—
Dipole
LClad recei\”ng < |n0*deint p'ane e
resistance | antenna wave from source [
Shadow " with power density 8
cast R, Radiation S (W/m?) SRy
by [——y resistance, R, \——( SR,
antenna. s = A — |
Effective , R, =R,
aperture, A,
_— (a) (b)

— /N =

Figure 2-9 (a) The receiving antenna matched to a load (R, = R;) reradiates a power that is
equal to the power delivered to the load. More generally, the reradiated and scattered power
from any antenna or object yields a radar cross-section (RCS) which is proportional to the
back-scattered power received at a radar at a distance r, as discussed in Chapter 12.

(b) Equivalent circuit.

where

S = power density at receiving antenna, W/m?
A, = effective aperture of antenna, m?

and a reradiated power

Power reradiated
3 Prerad = 4 = SA, (W)
T ST

where A, = reradiating aperture = A,, m* and

Prerad = Pioad

The above discussion is applicable to a single dipole (A /2 or shorter). However, it does not apply to all antennas.
In addition to the reradiated power, an antenna may scatter power that does not enter the antenna-load circuit.
Thus, the reradiated plus scattered power may exceed the power delivered to the load. See Sec. 21-15 for a
discussion that includes both receiving and transmitting conditions.

2-10 Effective Height

The effective height h (meters) of an antenna is another parameter related to the aperture. Multiplying the
effective height by the incident field E (volts per meter) of the same polarization gives the voltage V induced.
Thus,

V =hE (1)
Accordingly, the effective height may be defined as the ratio of the induced voltageto the incident field or
1%
h=— (m) )
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T:

0 06410 -
AE J\ r
el (=2 [=0.1\ ¢
| : 1 7

Ipchent Sinusoidal angular

field current /\ current
+ ) distribution R distribution

(a) Average current (b)

Figure 2-9-1 (a) Dipole of length / = A /2 with sinusoidal current distribution. (b) Dipole of
length I = 0.1 with triangular current distribution.

Consider, for example, a vertical dipole of length / = 1/2 immersed in an incident field E, as in

Fig. 2-9-1(a). If the current distribution of the dipole were uniform, its effective height would be /. The
actual current distribution, however, is nearly sinusoidal with an average value 2/ = 0.64 (of the max-
imum) so that its effective height o = 0.64/. It is assumed that the antenna is oriented for maximum
response.

If the same dipole is used at a longer wavelength so that it is only 0.1 long, the current tapers almost
linearly from the central feed point to zero at the ends in a triangular distribution, as in Fig. 2-9—1(b). The
average current is 1/2 of the maximum so that the effective height is 0.5/

Thus, another way of defining effective height is to consider the transmitting case and equate the effective
height to the physical height (or length /) multiplied by the (normalized) average current or

hp

I
h, = — I(z)dz=!i;hp (m)

— (3)
Iy Jo

where

h, = effective height, m
h, = physical height, m
I,y = average current, A

It is apparent that effective height is a useful parameter for transmitting tower-type antennas.' It also has an

application for small antennas. The parameter effective aperture has more general application to all types of
antennas. The two have a simple relation, as will be shown.

"Effective height can also be expressed more generally as a vector quantity. Thus (for linear polarization) we can write

V=he E=h.Ecost
where

hgz
E =

]

effective height and polarization angle of antenna, m

field intensity and polarization angle of incident wave, V m~!
angle between polarization angles of antenna and wave, deg
In a still more

general expression (for any polarization state), 6 is
Sec. 2-17).

i % x 5 sec
the angle between polarization states on the Poincaré sphere (
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For an antenna of radiation resistance R, matched to its load, the power delivered to the load is equal to
1 Vi p2E?
T4R "R, W (4)
In terms of the effective aperture the same power is given by
E2A,
P=SA, = 75 W) (%)
where Z( = intrinsic impedance of space (= 377 Q)
Equating (4) and (5), we obtain
R.A, h2Z,
he =2 = ¢ :
: Z (m) and A, w @) (6)
Thus, effective height and effective aperture are related via radiation resistance and the intrinsic impedance
of space.

To summarize, we have discussed the space parameters of an antenna, namely, field and power patterns,
beam area, directivity, gain, and various apertures. We have also discussed the circuit quantity of radiation
resistance and alluded to antenna temperature, which is discussed further in Sec. 17-1. Figure 2-10 illustrates

this duality of an antenna.

All about antennas at a glance

SPACE QUANTITIES
PHYSICAL
QUANTITIES Eg(6, ¢)
CIRCUIT  Size ‘:::t'l‘;ms Ey(6, ¢)
QUANTITIES « Weight 5(6, )
¢ Antenna A * Polarization, LP, CP, EP
impedance, Z, * Power

patterns, P, (0, ¢)

Current

* Radiation >
distribution

resistance, R, * Beam area, {1,

e Antenna
temperature, T, )

¢ Directivity, D
e Gain, G

ANTENNA
(transition
region)

e Effective aperture, 4,

¢ Radar cross-section, ¢
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EXAMPLE 2-10.1 Effective Aperture and Directivity of a Short Dipole Antenna
A plane wave is incident on a short dipole as in Fig. 2-11.

The wave is assumed to be linearly polarized with E in the y
direction. The current on the dipole is assumed constant and

-

. ; : . [
in the same phase over its entire length, and the terminating R,
resistance Ry is assumed equal to the dipole radiation resis- o ( b —_ y
tance R,. The antenna loss resistance R; is assumed equal P"%"";" of ™ X
to zero. What is (a) the dipole’s maximum effective aperture ::;L: == Short
and (b) its directivity? X e
E Solution Figure 2-11 Short dipole with

Th . Fecti ¢ . uniform  current induced by
(@) The maximum effective aperture of an antenna is incident wave.

v2
Aem == ZS?, (7]

where the effective value of the induced voltage V is here given by the product of the effective electric
field intensity at the dipole and its length, that is,

#

V = El (8)
The radiation resistance R, of a short dipole of length [ with uniform current will be shown later to be

80212 [ 1,,\2 Lo\ £ %2 :
R.= 1’2 (i‘-’) =790(~%) (I) Q) 9)

A = wavelength
I,y = average current
Iy = terminal current

where

The power density, or Poynting vector, of the incident wave at the dipole is related to the field
intensity by

EZ
-z

where Z = intrinsic impedance of the medium.

In the present case, the medium is free space so that Z = 120 Q. Now substituting (8), (9), and (10)
into (7), we obtain for the maximum effective aperture of a short dipole (for 1,y = Iy)
120m E21202 3, 2
em= T/ = — =0.119x1* Ans,
' T 20n2EE T gt T Rkl

4mA,  4m x 0.119)2
(b) P s o 1.5 Ans. (b)
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A typical short dipole might be /10 long and 2

/100 in diameter for a physical cross-
of 0.00112 as compared to the 0.1192

. effective aperture of Example 2-10.1. Thus, a sing
antenna may have a physical aperture that is smaller than its effective aperture. However,

of many dipoles or linear antennas has an overall physical aperture that, like horns and di
its effective aperture. On the other hand, an end-fire array of dipoles, as in a Yagi-Uda antenna, has an end-on

physical cross section that is smaller than the antenna’s effective aperture. Thus, depending on the antenna,
physical apertures may be larger than effective apertures, or vice versa.

—

EXAMPLE 2-10.2 Effective Aperture and Directivity of Linear 1/2 Dipole
A plane wave incident on the antenna is traveling in the negative x direction as in Fig. 2-12a. The wave
is linearly polarized with E in the y direction. The equivalent circuit is shown in Fig. 2-12b. The antenna
has been replaced by an equivalent or Thévenin generator. The infinitesimal voltage dV of this generator
due to the voltage induced by the incident wave in an infinitesimal element of length dy of the antenna is

sectional aperture
le dipole or linear
a broadside array
shes, is larger than

2
dV=Edycos¥ (11)

dV R,
dl
( : w = — D
Incident Ry dy 7 Ry
wa\re/
’ (a) (b)
Figure 2-12 Linear /2 antenna in field of electromagnetic wave (a) and equivalent

circuit (b).

It is assumed that the infinitesimal induced voltage is proportional to the current at the infinitesimal
element as given by the current distribution (11). Find (a) the effective aperture and (&) the directivity of
the A /2 dipole.

B Solution ‘ A
(a) The total induced voltage V is given by integrating (1 1) over the length of the antenna. This may be

written as

A/4 2 12)
V= Zf E cos =2 dy (
0 A
Performing the integration in (12) we have
EXx (13)
V=—
Vs

The value of the radiation resistance R, of the linear A/2 antenna will be taken as 73 Q. Riigminsing
resistance Ry is assumed equal to R;.
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‘ ; a 13 ntenna,
Thus. we obtain, for the maximum effective aperture of a linear A/2 a

120 E2)° 30

A = — A2 =0.1322 Ans. (a)
M T An2E2x 73 13w

i 1342
4mAe _ 4m X 0.132% _ L63  Ans. (b)

(b)y D=

2 2
A A ]
The maximum effective aperture of the Linear A/2
i i na
linear A/2 antenna is about 10 percent / anten

greater than that of the short dipole.

The maximum effective aperture of T
the A/2 antenna is approximately the Al4
same as an area 1/2 by 1/4X on a side, _l_
as illustrated in Fig. 2-13a. This area is
0.125A%. An elliptically shaped aperture
of 0.1322 is shown in Fig. 2-13b. The (a) (b)
physical significance of these apertures is
that power from the incident plane wave

A2 ;!

A
Y

A2

[

Figure 2-13 (a) Maximum effective aperture of linear
is absorbed over an area of this size and A/2 antenna is approximately represented by rectangle
is delivered to the terminal resistance or 1/2 by 1/4 on a side. (b) Maximum effective aperture of
load. linear A/2 antenna represented by elliptical area of

Although the radiation resistance, 0.1322,
effective aperture, and directivity are the
same for both receiving and transmitting, the current distribution is, in general, not the same. Thus, a plane
wave incident on a receiving antenna excites a different current distribution than a localized voltage applied
to a pair of terminals for transmitting.

2-11 The Radio Communication Link

The usefulness of the aperture concept is well illustrated by using i i i 22 Sk
‘ _ g it to derive the important F ssion
formula published in 1946 by Harald T. Friis (1) of the Bell Telephone Laboratory portant Friis transmissi
Referring to Fig. 2-14, the formula gives ’

the power received over a radio commu- ;r:;rs"rgttmg adla
nication link. Assuming lossless, matched T S
antennas, let the transmitter feed a power P, - p >

to a transmitting antenna of effective aper- A, \ A

ture A, . At a distance r a receiving antenna

of effective aperture A, intercepts some 4
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If the aptenna t.ms gain G, the power per unit arca available at the receiving antenna will be increased in
pmpornon as given by

PG,

= 4mr? (W)

Sr 2)

Now the power collected by the lossless, matched receiving antenna of effective aperture Ay is

PiGiAer
Pr = SI‘Al'f' = _4-.;',_2'_ (W] (3}
The gain of the transmitting antenna can be expressed as
4ﬂAcr
G = 22 )
Substituting this in (3) yields the Friis transmission formula
P, AerAer ; g ai i
5 =0 (dimensionless) Friis transmission formula (3)
T
where
P, = received power, W
P, = transmitted power, W
A,, = effective aperture of transmitting antenna, m*
A,, = effective aperture of receiving antenna, m?
r = distance between antennas, m
A = wavelength, m
T

EXAMPLE 2-11.1 Radio Communication Link

A radio link has a 15-W transmitter connected to an antenna of 2.5 m? effective aperture at 5 GHz. The
receiving antenna has an effective aperture of 0.5 m? and is located at a 15-km line-of-sight distance from
the transmitting antenna. Assuming lossless, matched antennas, find the power delivered to the receiver.

B Solution
From (5)
At Aer 2.5x0.5 — 23 uW o
P b 202 15152 % 106 x 0.062 . )

2-12 Fields from Oscillating Dipole

Although a charge moving with uniform velocity along a straight _conductor does not radiate, a charge moving
back and forth in simple harmonic motion along the conductor is subject to acceleration (and deceleration)
and radiates.

Toillustrate radiation froma dipole antenna, let us consider that the dipole of Fig. 2—15 has two equal charges
of opposite sign oscillating up and down in harmonic motion with instantaneous separation / (maximum
separation /o) while focusing attention on the electric field. For clarity only a single electric field line is shown.

Attime ¢ = 0 the charges are at maximum separation and undergo maximum acceleration v as they reverse
direction (Fig. 2—15a). At this instant the current / is zero. Atan %—period later, the charges are moving toward
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U = max .
¥ Electric field line or wave front \
= 9 =0 (8) \ith charges at ends of dipole
Field line
-
v _ 1 () Wavefront moves outas
14 'U' T3 charges go in
H - -
1= max, L =11 (c) As c!'larg?s pass the midpoint
v=0 '} 4 the field lines cut loose
u

. A
\ ¥ r=321 (d)
Iy U \
/ Wave fronts moving out

v =max @
I =0 .
.“=§T (e)

O Saistey

Figure 2-15 Oscillating electric dipole consisting of two electric charges in simple harmonic
motion, showing propagation of an electric field line and its detachment (radiation) from the
dipole. Arrows next to the dipole indicate current (/) direction.

each other (Fig. 2-15b) and at a %-period they pass at the midpoint (Fig. 2-15¢). As this happens, the field
lines detach and new ones of opposite sign are formed. At this time the equivalent current / is a maximum
and the charge acceleration is zero. As time progresses to a %-period, the fields continue to move out as in
Fig. 2-15d and e. i

An oscillating dipole with more feed lines is shown in Fig. 2-16 at five instants of time. In
order to understand the process of radiation shown in Fig. 2-16, imagine that a smoker is display-
ing his capability of making rings of smoke. As the rings move farther, their size increases. With the
assumed maintenance of shape, a distant ring will surely be of bigger size with lesser smoke density.
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Equivalent
A/2 dipole

Spheroid

Figure 2-16 Electric field lines of the radiation moving out from A/2 dipole antenna.
(Produced by Edward M. Kennaugh, courtesy of John D. Cowan, Jr)

This analogy conforms to distribution of the
electric field intensity at farther and farther dis-
tances from the source as has been illustrated
by Fig. 2-16. The concept of direction and sep-
aration of lines shown, however, shall not be
applicable to the smoke.

2-13 Antenna Field Zones

The fields around an antenna may be divided
into two principal regions, one near the antenna
called the near field or Fresnel zone and one at
a large distance called the far field or Fraun-
hofer zone. Referring to Fig. 217, the boundary
between the two may be arbitrarily taken to be
at a radius

To
infinity

Far field

or
Fraunhofer
region

Boundary sphere
of antenna region

Near field
or
Fresnel region

Antenna
region

Fresnel-Fraunhofer
boundary sphere

Figure 2-17 Antenna region, Fresnel region
and Fraunhofer region.

(1
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where

I — maximum dimension of the antenna, m
A = wavelength, m

In the far or Fraunhofer region, the measurable field components arc transverse to the radial direction fror_n
the antenna and all power flow is directed radially outward. In the far field the shape of the ﬁelfl pattern is
independent of the distance. In the near or Fresnel region, the longitudinal component of the electric field may
be significant and power flow is not entirely radial. In the near field, the shape of the field pattern depends, in
general, on the distance. _

Enclosing the antenna in an imaginary boundary sphere as in Fig. 2-18aitis as though the region near tltne
poles of the sphere acts as a reflector. On the other hand, the waves expanding gerpenfllcular to the dlp_ole in
the equatorial region of the sphere result in power leakage through the sphere as if partially transparent in this
region. . |

This results in reciprocating (oscillating) energy flow near the antenna accompamed‘by outwa_rd ﬂow- in
the equatorial region. The outflow accounts for the power radiated from the antenna, while the reciprocating
energy represents reactive power that is trapped near the antenna like in a resonator. This oversimplified

Boundary Pole
sphere \ / Dipole antenna
e =~ Far-
~
N H ‘ff S5 Y ol field
o / j \ \\ d (radiated
/ l ‘l \ energy flow)
~_ / Near-field | —
j eqiatorial - |’ | (reactive \ = .
plane ‘ H zzfs?t)ifon) ! \
«~ \\ Tl “T ," > T~ Boundary sphere
\ / transparent
el \\§\ 44 / .
¥ N // N
\“"-...., ’,/
e Boundary sphere opaque
Pole (acts as a reflector)
(a)
Zero
Field .
pattern Maximum

(b)

Figure 2-18 Energy flow near a dipole antenna (a) and radiation field pattern (b). The radius
vector ris proportional to the field radiated in that direction.
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way for the field pattern of the A /2 dipole antenna as shown in Fig. 2-185.

3 and displayed in Fig. 6-6.

discussion accounts in a qualitative
of time in the electric field,

The energy picture is discussed in more detail in Sec. 6. .
For a A/2 dipole antenna, the cnergy is stored at one instant | _
ar the ends of the antenna or maximum charge regions, while a 3-period later the

mainly ne ‘ : _ ‘

energy is stored in the magnetic field mainly near the center of the antenna or maximum current

region. o ) o 1 fows bei
Note that although the term power flow is sometimes used, it is actually energy which flows, power being

the time rate of energy flow. A similar loose usage occurs when we say we pay a power bill, when, in fact,

we are actually paying for electric energy.

2-14 Shape-impedance Considerations

It is possible in many cases to deduce the qualitative behavior of an antenna from its shape. This may
be illustrated with the aid of Fig. 2-19. Starting with the opened-out two-conductor transmission line of
Fig. 2-19a, we find that, if extended far enough, a nearly constant impedance will be provided at the input
(left) end ford < A and D > A.

In Fig. 2-19b the curved conductors are straightened into regular cones and in Fig. 2-19¢ the cones are
aligned collinearly, forming a biconical antenna. In Fig. 2-19d the cones degenerate into straight wires. In
going from Fig. 2-19a to d, the bandwidth of relatively constant impedance tends to decrease. Another dif-
ference is that the antennas of Fig. 219« and b are unidirectional with beams to the right, while the antennas
of Fig. 2—19c¢ and d are omnidirectional in the horizontal plane (perpendicular to the wire or cone axes).

A different modification is shown in Fig. 2—19e. Here the two conductors are curved more sharply and
in opposite directions, resulting in a spiral antenna with maximum radiation broadside (perpendicular to the
page) and with polarization which rotates clockwise. This antenna, like the one in Fig. 2—19a, exhibits very
broadband characteristics (see Chap. 18).

The dipole antennas of Fig. 2-19 are balanced, i.e., they are fed by two-conductor (balanced) transmission
lines. Figure 2-20 illustrates a similar evolution of monopole antennas, i.e., antennas fed from coaxial
(unbalanced) transmission lines.

By gradually tapering the inner and outer conductors or a coaxial transmission line, a very wide band
antenna with an appearance reminiscent of a volcanic crater and puff of smoke is obtained, as suggested in
the cutaway view of Fig. 2—20a.

In Fig. 2-205b the volcano form is modified into a double dish and in Fig. 2-20c into two wide-angle
cones. All of these antennas are omnidirectional in a plane perpendicular to their axes and all have a wide
band'w_idth. For example, an actual biconical antenna, as in Fig. 2-20c¢, with a full cone angle of 120° has an
omnidirectional pattern and nearly constant 50-§2 input impedance (power reflection less than | percent or
VSWR < 1.2) over a 6 to 1 bandwidth with cone diameter D = A at the lowest frequency.
resirlltcsr?zstigg the lower cone angle to 180° or into a flat ground pllane whi_le reducing the. upper cone angle

'S n the antenna of Fig. 2-20d. Collapsu}g the upper cone into a thin stub, we arrive at the extreme
:}od;ﬁcanop of Fig. 2-20e. If the antenna .Of Fig. 2T2Oa i1s regarded as tlhc most basic form, the stub type of
8- 2-20e is the most degenerate form, with a relatively narrow bandwidth.

Antennas with large and abrupt discontinuities have large reflections and act as reflectionless transducers
only over narrow frequency bands where the reflections cancel. Antennas with discontinuities that are
Small and gradual have small reflections and are, in general, relatively reflectionless transducers over

wide frequency bands.




