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Chapter 5

Point Sources and
Their Arrays

Topics in this chapter include:

Point source radiators
Power patterns
Isotropic sources
Radiation intensity
Examples of power patterns field patterns
Field patterns
Phase patterns
Arrays of two point sources
Pattern multiplication
Pattern synthesis
Non-isotropic dissimilar sources

Linear arrays of n point sources
Null directions and beam widths
Non uniform amplitude distributions
Dolph-Tschebycheff (D-T) or optimum
distribution
D-T distribution for an array of 8-point sources
A comparison of amplitude distributions
Continuous arrays
Huygen’s principle
Diffraction by flat sheet
Rectangular broadside arrays

5–1 Introduction

In chap. 2 an antenna was treated as an aperture. In this chapter an antenna is first considered as a point source
and later the concept is extend to the formation of arrays of point source. This approach is of great value since
the pattern of any antenna can be regarded as produced by an array of point sources. Further the initial
discussion relating to arrays is confined to isotropic point sources, which may represent different kinds of
antennas. Later the discussion is extended to encompass more general case of non-uniform distribution.

With the information of this chapter and the computer programs on the book’s website, an arrays producing
almost any desired patterns may be designed.

5–2 Point Source Defined

At a sufficient distance in the far field of an antenna, the radiated fields of the antenna are transverse and the
power flow or Poynting vector (Wm−2) is radial as at the point O at a distance R on the observation circle
in Fig. 5−1. It is convenient in many analyses to assume that the fields of the antenna are everywhere of this
type. In fact, we may assume, by extrapolating inward along the radii of the circle, that the waves originate
at a fictitious volumeless emitter, or point source, at the center O of the observation circle. The actual field
variation near the antenna, or “near field,” is ignored, and we describe the source of the waves only in terms
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of the “far field” it produces. Provided that our observations are made at a sufficient distance, any antenna,
regardless of its size or complexity, can be represented in this way by a single point source.

Instead of making field measurements around the observation circle with the antenna fixed, the equivalent
effect may be obtained by making the measurements at a fixed point Q on the circle and rotating the antenna
around the center O. This is usually the more convenient procedure if the antenna is small.

In Fig. 5−1a, the center O of the antenna coincides with the center of the observation circle. If the center
of the antenna is displaced from O, even to the extent that O lies outside the antenna as in Fig. 5−1b, the
distance d between the two centers has a negligible effect on the field patterns at the observation circle,
provided R � d, R � b, and R � λ. However, the phase patterns will generally differ, depending on d . If
d = 0, the phase shift around the observation circle is usually a minimum. As d is increased, the observed
phase shift becomes larger.
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Figure 5–1 Antenna and observation circle.

As discussed in Sec. 2−3, a complete description of the far field of a source requires three patterns: two
patterns of orthogonal field components as a function of angle [Eθ (θ, φ) and Eφ(θ, φ)] and one pattern of the
phase difference of these fields as a function of angle [δ (θ, φ)]. For many purposes, however, such a complete
knowledge is not necessary. It may suffice to specify only the variation with angle of the power density or
Poynting vector magnitude (power per unit area) from the antenna [Sr (θ, φ)]. In this case the vector nature of
the field is disregarded, and the radiation is treated as a scalar quantity. This is done in Sec. 5−3. The vector
nature of the field is recognized later in the discussion on the magnitude of the field components. Although the
cases considered as examples in this chapter are hypothetical, they could be approximated by actual antennas.

5–3 Power Patterns

Let a transmitting antenna in free space be represented by a point-source radiator located at the origin of the
coordinates in Fig. 5−2 (see also Fig. 2−5). The radiated energy streams from the source in radial lines. The
time rate of energy flow per unit area is the Poynting vector, or power density (watts per square meter). For a
point source (or in the far field of any antenna), the Poynting vector S has only a radial component Sr with
no components in either the θ or φ directions (Sθ = Sφ = 0). Thus, the magnitude of the Poynting vector, or
power density, is equal to the radial component (|S| = Sr).
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Figure 5–2 Spherical coordinates for a point source of radiation in free space.

A source that radiates energy uniformly in all directions is an isotropic source. For such a source the radial
component Sr of the Poynting vector is independent of θ and φ. A graph of Sr at a constant radius as a
function of angle is a Poynting vector, or power-density, pattern, but is usually called a power pattern. The
three-dimensional power pattern for an isotropic source is a sphere. In two dimensions the pattern is a circle
(a cross section through the sphere), as suggested in Fig. 5−3.
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� � 0
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Figure 5–3 Polar power pattern of
isotropic source.

Although the isotropic source is convenient in theory, it is
not a physically realizable type. Even the simplest antennas
have directional properties, i.e., they radiate more energy in
some directions than in others. In contrast to the isotropic
source, they might be called anisotropic sources. As an
example, the power pattern of such a source is shown in
Fig. 5−4a where Srm is the maximum value of Sr .

If Sr is expressed in watts per square meter, the graph is an
absolute power pattern. On the other hand, if Sr is expressed
in terms of its value in some reference direction, the graph is
a relative power pattern. It is customary to take the reference
direction such that Sr is a maximum. Thus, the pattern radius for relative power is Sr/Srm where Srm is the
maximum value of Sr . The maximum value of the relative power pattern is unity, as shown in Fig. 5−4b. A
pattern with a maximum of unity is also called a normalized pattern.
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Figure 5–4 (a) Power pattern and (b) relative power pattern for same source. Both patterns
have the same shape. The relative power pattern is normalized to a maximum of unity (1).
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5–4 A Power Theorem1 and its Application to an Isotropic Source

If the Poynting vector is known at all points on a sphere of radius r from a point source in a lossless medium,
the total power radiated by the source is the integral over the surface of the sphere of the radial component
Sr of the average Poynting vector. Thus,

P = ©
∫∫

S · ds = ©
∫∫

Sr ds (1)

where

P = power radiated, W
Sr = radial component of average Poynting vector, W m−2

ds = infinitesimal element of area of sphere (see Fig. 3−2b)
= r2 sin θ dθ dφ, m2

For an isotropic source, Sr is independent of θ and φ so

P = Sr ©
∫∫

ds = Sr × 4πr2 (W) (2)

and

Sr = P

4πr2
(W m−2) (3)

Equation (3) indicates that the magnitude of the Poynting vector varies inversely as the square of the distance
from a point-source radiator. This is a statement of the well-known law for the variation of power per unit
area as a function of the distance.

5–5 Radiation Intensity

As discussed in Sec. 2−5, the radiation intensity U is expressed in watts per unit solid angle (W sr−1). The
radiation intensity is independent of radius. It is power per steradian. From (5−4−3) we have

r2Sr = P/4π = U (W/sr) (1)

Thus, the power theorem may be restated as follows:
The total power radiated is given by the integral of the radiation intensity over a solid angle of 4π steradians.

As already mentioned in Sec. 2−5, power patterns can be expressed in terms of either the Poynting vector
(power density) or the radiation intensity. A power pattern in terms of U is the same as in Fig. 5−4a with the
maximum Poynting vector (Sm) replaced by the maximum radiation intensity (Um) and the Poynting vector

1This theorem is a special case of a more general relation for the complex power flow through any closed surface as given by

P = 1

2
©
∫∫

(E × H∗) · ds (1)

where P is the total complex power flow and E and H∗ are complex vectors representing the electric and magnetic fields, H∗ being the
complex conjugate of H. The average Poynting vector is

S = 1

2
Re(E × H∗) (2)

Now the power flow in the far field is entirely real; hence, taking the real part of (1) and substituting (2), we obtain the special case of (3).
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as a function of r(Sr) replaced by the radiation intensity as a function of r(Ur). The maximum value of Um

is in the θ = 0 direction. Relative Poynting vector (or power density) and relative radiation intensity patterns
are identical.

Applying (1) to an isotropic source gives

P = 4πU0 (W)

where U0 = radiation intensity of isotropic source, W sr−1.

5–6 Examples of Power Patterns

EXAMPLE 5–6.1 Source with Unidirectional Cosine Power Pattern
A source has a cosine radiation-intensity pattern, that is,

U = Um cos θ (1)

where Um = maximum radiation intensity
The radiation intensity U has a value only in the upper hemisphere (0 ≤ θ ≤ π/2 and 0 ≤ φ ≤ 2π)

and is zero in the lower hemisphere. The radiation intensity is a maximum at θ = 0. The pattern is shown
in Fig. 5−5. The space pattern is a figure of revolution of this circle around the polar axis. Find the
directivity.

To find the total power radiated by the cosine source, we apply (5−4−1) and integrate only over the
upper hemisphere. Thus

P =
∫ 2π

0

∫ π/2

0
Um cos θ sin θ dθ dφ = πUm (2)

If the power radiated by the unidirectional cosine source is the same as for an isotropic source, then (2)
and (1) in Sec. 5−5 may be set equal, yielding

πUm = 4πU0

or

Directivity = Um

U0
= 4 = D Ans (3)

� � 0
Polar
axis
1

0.5

Half-power
points

Figure 5–5 Unidirectional cosine power pattern.

Thus, the maximum radiation
intensity Um of the unidirectional
cosine source (in the direction θ =0)
is 4 times the radiation intensity U0

from an isotropic source radiating the
same total power. The power patterns
for the two sources are compared in
Fig. 5−6 for the same total power
radiated by each.
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EXAMPLE 5–6.2 Source with Bidirectional Cosine Power Pattern
A source has a cosine power pattern that is bidirectional. Find the directivity. With radiation in two
hemispheres instead of one; the maximum radiation intensity is half its value in Example 5−6.1. Thus,
from (3),

D = 4/2 = 2 Ans.

EXAMPLE 5–6.3 Source with Sine (Doughnut) Power Pattern
A source has a radiation intensity pattern given by

U = Um sin θ (4)

The pattern is shown in Fig. 5−6. The space pattern is a
� � 0

Polar
axis

4
3

2

1

Cosine power
pattern

Isotropic
power pattern

Figure 5–6
Power patterns of
cosine and
isotropic sources.

figure-of-revolution of this pattern around the polar axis and
has the form of a doughnut. Find D.

Solution
Applying (5−4−3) the total power radiated is

P = Um

∫ 2π

0

∫ π

0
sin2 θ dθ dφ = π2Um (5)

If the power radiated by this source is the same as for an
isotropic source taken as reference, we have

π2Um = 4πU0 (6)

and

Directivity = Um

U0
= 4

π
= 1.27 = D Ans. (7)

EXAMPLE 5–6.4 Source with Sine-Squared (Doughnut) Power Pattern
A source has a sine-squared radiation-intensity power pattern. The radiation-intensity pattern is given by

U = Um sin2 θ (8)

The power pattern is shown in Fig. 5−7a. This type of pattern is of considerable interest because it is
the pattern produced by a short dipole coincident with the polar (θ = 0) axis in Fig. 5−7a. Applying
(5−4−3), the total power radiated is

P = Um

∫ 2π

0

∫ π

0
sin3 θ dθ dφ = 8

3
πUm (9)

If P is the same as for the isotropic source,

8

3
πUm = 4πU0
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� � 0

� � 0

(b)(a)

Figure 5–7 (a) Sine-squared power pattern and (b) unidirectional cosine-squared power
pattern.

and

Directivity = Um

U0
= 3

2
= 1.5 = D Ans. (10)

EXAMPLE 5–6.5 Source with Unidirectional Cosine-Squared Power Pattern
A source with a unidirectional cosine-squared radiation-intensity pattern is given by

U = Um cos2 θ (11)

The radiation intensity has a value only in the upper hemisphere as in Fig. 5−7b. The three-dimensional
or space pattern is a figure-of-revolution of this pattern around the polar (θ = 0) axis. Find the directivity.

Solution
The total power radiated is

P = Um

∫ 2π

0

∫ π/2

0
cos2 θ sin θ dθ dφ = 2

3
πUm (12)

If P is the same as radiated by an isotropic source,

2

3
πUm = 4πU0

and

Directivity = Um

U0
= 6 = D Ans. (13)

Thus, the maximum power per unit solid angle (at θ = 0) from the source with the cosine-squared power
pattern is six times the power per unit solid angle from an isotropic source radiating the same power.

Directivities are summarized in Table 5−1.
Example 5−6.6 provides some valuable insights into the effect minor lobes have on directivity or gain. Without
minor lobes the gain of this antenna would be 91.4 or 19.6 dBi as compared to a gain of 18.0 or 12.6 dBi with
minor lobes. The minor lobes have large beam or solid angles because they extend 360◦ in the azimuth or φ

direction at large sin θ values (θ near 90◦). The main lobe, on the other hand, is at small θ angles so the Pn(θ)

sin θ product is small, in fact, zero at θ = 0◦.
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Table 5–1 Directivities of the Point Source Patterns in Examples 5−6.1 to 5−6.5.

Pattern Directivity
Unidirectional cosine 4
Bidirectional cosine 2
Sine doughnut 1.27
Sine-squared doughnut 1.5
Unidirectional cosine squared 6

EXAMPLE 5–6.6 Pencil Beam with Minor Lobes
As shown in Fig. 5−8, the pattern has pencil beam (symmetrical around the θ = 0 axis) with a main-lobe
HPBW of approximately 22◦ and four minor lobes. Find the directivity.

Solution
The directivity is given by

D = 4π∫ 2π

0

∫ π

0 Pn(θ) sin θ dθ dφ
(14)

where the denominator equals the total beam area �A.
Since the pattern is symmetrical (no variation with φ), the integral with respect to φ yields 2π and

(14) reduces to

D = 4π

2π
∫ π

0 Pn(θ) sin θ dθ
(15)

We have only the pattern graph available (no analytical expression), so let us divide the pattern (Fig. 5−8)
into 36 steps of 5◦ each. The approximate value of the integral in the first (m = 1) 5◦ section (= π/36 rad)

is given by

π

36
Pn(θ1)av sin θ1 = π

36

1.0 + 0.93

2
sin 2.5◦ (16)

and the approximate directivity is then given by the summation of all 36 sections or by

D � 4π

2π(π/36)
m=36∑
m=1

Pn(θm)av sin θm

(17)

Completing the summation, we obtain

D = 4π

�A

� 4π

2π(π/36)(0.25 + 0.37 + 0.46 + 0.12 + 0.07)
= 72

1.27π
= 18.0 (18)

Main First Second Third Fourth
lobe minor minor minor minor

lobe lobe lobe lobe
(back
lobe)

or D � 12.6 dBi
It is noteworthy that the second minor lobe contributes most to the total beam area, the first minor lobe

almost as much, and the main lobe less than either. Thus, the directivity is greatly affected by the minor
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Figure 5–8 Power patterns of beam antenna in polar plot at (a) and in rectangular plot
at (b). The large shaded area A of (b) is for an isotropic source while the antenna area a
appears as a series of small areas. The directivity D = A / a

lobes, which is a common situation with actual antennas. For this antenna pattern the beam efficiency is
given by

εM = 0.25

1.27
= 0.20 (19)

If the second minor lobe were eliminated, the directivity would increase to 14.5 dBi (up 1.9 dB) and if
both first and second minor lobes were eliminated, the directivity would increase to 17.1 dBi (up 4.5 dB).

The directivity obtained in Example 5−6.6 is approximate. By sufficiently reducing the step size (5◦ in
the example), the summation can be made as precise as the available data will allow. Computation of this
numerical integration can be facilitated by using a computer.

The half-power beamwidth of the pattern in the example is about 22◦. Taking kp = 1 and εM as in (19),
the approximate directivity is then

D � 41,000εM

kp × HPBW2 = 41,000 × 0.2

(22◦)2
= 16.9 or 12.3 dBi (20)

which is 0.3 dB less than obtained by the 36-step summation.
The beam area of an isotropic source equals 4π steradians. In Fig. 5−8b this corresponds to the area A

under the sin θ curve. The beam area of the source in Example 5−6.6 corresponds to the area a under the
Pn(θ) sin θ curve. Thus, the directivity is simply A/a or the ratio of the area of the isotropic source to the
area of the source being measured. Hence,

D = 4π

�A

= A

a
(21)
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If the areas A and a are cut from a lead sheet of uniform thickness, the directivity equals the ratio of the
weight of A to the weight of a.

5–7 Field Patterns

The discussion in the preceding sections is based on considerations of power. This has afforded a simplicity
of analysis, since the power flow from a point source has only a radial component which can be considered
as a scalar quantity. To describe the field of a point source more completely, we need to consider the electric
field E and/or the magnetic field H (both vectors). For point sources we deal entirely with far fields so E and
H are both entirely transverse to the wave direction, are perpendicular to each other, are in-phase, and are
related in magnitude by the intrinsic impedance of the medium (E/H = Z = 377 � for free space). For our
purposes it suffices to consider only one field vector, and we arbitrarily choose the electric field E.

Since the Poynting vector around a point source is everywhere radial, it follows that the electric field
is entirely transverse, having only Eθ and Eφ components. The relation of the radial component Sr of the
Poynting vector and the electric field components is illustrated by the spherical coordinate diagram of Fig. 5−9.
The conditions characterizing the far field are then:

1. Poynting vector radial (Sr component only)
2. Electric field transverse (Eθ and Eφ components only)

The Poynting vector and the electric field at a point of the far field are related in the same manner as they are
in a plane wave, since, if r is sufficiently large, a small section of the spherical wave front may be considered
as a plane.

The relation between the average Poynting vector and the electric field at a point of the far field is

Sr = 1

2

E2

Z
(1)

where Z0 = intrinsic impedance of medium and

E =
√

E2
θ + E2

φ (2)

x

y

Equatorial
plane

Polar
axis

z

�

�

Sr

E�

E�

Figure 5–9 Relation of the Poynting
vector S and the two electric field
components of the far field.

where

E = amplitude of total electric field intensity
Eθ = amplitude of θ component
Eφ = amplitude of φ component

The field may be elliptically, linearly or circularly
polarized.

If the field components are rms values, rather than
amplitudes, the Poynting vector is twice that given in (1).

A pattern showing the variation of the electric field
intensity at a constant radius r as a function of angle (θ, φ)

is called a field pattern. In presenting information con-
cerning the far field of an antenna, it is customary to give
the field patterns for the two components, Eθ and Eφ ,
of the electric field since the total electric field E can be
obtained from the components by (2), but the components
cannot be obtained from a knowledge of only E.



“c05” — 2010/3/22 — page 96 — #11

96 Chapter 5 Point Sources and Their Arrays

When the field intensity is expressed in volts per meter, it is an absolute field pattern.1 On the other hand,
if the field intensity is expressed in units relative to its value in some reference direction, it is a relative field
pattern. The reference direction is usually taken in the direction of maximum field intensity. The relative
pattern of the Eθ component is then given by

Eθ

Eθm

(3)

and the relative pattern of the Eφ component is given by

Eφ

Eφm

(4)

where

Eθm = maximum value of Eθ

Eφm = maximum value of Eφ

The magnitudes of both the electric field components, Eθ and Eφ , of the far field vary inversely as the distance
from the source. However, they may be different functions, F1 and F2, of the angular coordinates, θ and φ.
Thus, in general,

Eθ = 1

r
F1(θ, φ) (5)

Eφ = 1

r
F2(θ, φ) (6)

Since Srm = E2
m/2Z, where Em is the maximum value of E, it follows on dividing this into (1) that the

relative total power pattern is equal to the square of the relative total field pattern. Thus,

Pn = Sr

Srm

= U

Um

=
(

E

Em

)2

(7)

EXAMPLE 5–7.1 Source with Cosine Field Pattern

Figure 5–10 (a) Relative Eφ pattern of
Example 5−7.1 and (b) the relative power
pattern.

An antenna’s far field has only an Eφ component in
the equatorial plane, the Eθ component being zero
in this plane. The relative equatorial-plane pattern of
the Eφ component (that is, Eφ as a function of φ for
θ = 90◦) is given by

Eφ

Eφm

= cos φ (8)

This pattern is illustrated at the left of Fig. 5−10. The
length of the radius vector in the diagram is propor-
tional to Eφ . A pattern of this form could be produced
by a short dipole coincident with the y axis. Find D.

The relative (normalized) power pattern in the
equatorial plane is equal to the square of the relative
field pattern. Thus

1The magnitude depends on the radius, varying inversely as the distance (E ∝ 1/r).
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Pn = Sr

Srm

= U

Um

=
(

Eφ

Eφm

)2

(9)

and substituting (8) into (9) we have

Pn = cos2 φ

This pattern is illustrated at the right of Fig. 5−10.

EXAMPLE 5–7.2 Source with Sine Field Pattern
An antenna has a far field that has only an Eθ component in the equatorial plane, the Eφ component being
zero in this plane. Assume that the relative equatorial-plane pattern of the Eθ component (that is, Eθ as
a function of φ for θ = 90◦) for this antenna is given by

Eθ

Eθm

= sin φ (10)

This pattern is illustrated by Fig. 5−11a and could be produced by a small loop antenna, the axis of the
loop coincident with the x axis. Find D.

x

y

� � 0

(b)

x

(a)

y

� � 0

Figure 5–11 (a) Relative Eθ pattern of Example 5−7.2 and (b) the relative power pattern.

The relative (normalized) power pattern in the equatorial plane is

Pn = sin2 φ (11)

This pattern is shown by Fig. 5−11.

EXAMPLE 5–7.3 Short Dipole and Loop Patterns
An antenna’s far field has both Eθ and Eφ components in the equatorial plane (θ = 90◦). Suppose that
this antenna is a composite of the two antennas we have just considered in Examples 5−7.1 and 5−7.2 and
that equal power is radiated by each antenna. If both patterns are of identical shape in three dimensions
as well as in the xy plane, as from a short dipole and a small loop, it then follows that at a radius r from
the composite antenna, Eθm = Eφm. The individual patterns for the Eθ and Eφ components as given by
(10) and (8) may then be shown to the same scale by one diagram, as in Fig. 5−12a. The relative pattern
of the total field E is

E

Em

=
√

sin2 φ + cos2 φ = 1 (12)
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which is a circle as indicated by the dashed line in Fig. 5−12a. Find D.

y

� � 0

� � 45�

E

E�

E�

(a)

x x

y

� � 0

(b)

Figure 5–12 (a) Relative patterns of Eθ and Eφ components of the electric field and the
total field E (dashed) of the antenna of Example 5–7.3. (b) Relative total power pattern.

The relative pattern in the equatorial plane for the total power is therefore a circle of radius unity as
illustrated by Fig. 5−12b.

We note in Fig. 5−12a that at φ = 45◦ the magnitudes of the two field components, Eθ and Eφ ,
are equal. Depending on the time phase between Eθ and Eφ , the field in this direction could be plane,
elliptically or circularly polarized, but regardless of phase the power is the same. To determine the type
of polarization requires that the phase angle between Eθ and Eφ be known. This is discussed in the next
section.

5–8 Phase Patterns

Assuming that the field varies harmonically with time and that the frequency is known, the far field in all
directions from a source may be completely specified by a knowledge of the following four quantities:

1. Amplitude of the polar component Eθ of the electric field as a function of r, θ , and φ

2. Amplitude of the azimuthal component Eφ of the electric field as a function of r, θ , and φ

3. Phase lag δ of Eφ behind Eθ as a function of θ and φ

4. Phase lag η of either field component behind its value at a reference point as a function of r, θ , and φ

Since we regard the field of a point source as a far field everywhere, the above four quantities can be
considered as those required for a complete knowledge of the field of a point source.

If the amplitudes of the field components are known at a particular radius from a point source in free space,
their amplitudes at all distances are known from the inverse-distance law. Thus, it is usually sufficient to
specify Eθ and Eφ as a function only of θ and φ as, for example, by a set of field patterns.

Figure 5−13 shows the pattern of Fig. 2−3 in three-dimensional, polar and decibel displays. Note that
the polarity of the lobes alternate (+ and −). Thus, when the magnitude of the field of one lobe (+) and the
adjacent lobe (−) are equal, the total field goes to zero, producing a null.
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Figure 5–13 Three-dimensional field pattern at (a), polar pattern at (b), and decibel pattern
at (c) showing alternate phasing (+ and −) of pattern lobes.

EXAMPLE 5–8.1 Field of Dipole and Loop in Phase Quadrature
A short dipole is situated inside a small loop as in Fig. 5−14. The magnitude of the fields of both dipole
and loop are equal. If the dipole and loop are fed in quadrature or 90◦ phasing, what are the fields that
are observed as a function of azimuth in the plane of the page?

NW

SW SE

NE

LCP

RCP LCP

RCP

Horizontal

Horizontal

VerticalVertical
DIPOLE LOOP

E�

E�

Figure 5–14 Fields of short dipole and small loop of equal magnitude and in phase
quadrature (90◦).
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Solution
The fields north and south are horizontally polarized (in the plane of the page). The fields east and west
are vertically polarized. At 45◦ or NE the field is right circularly polarized (RCP). At 135◦ or SE the
field is left circularly polarized (LCP). At 225◦ or SW the field is again right circularly polarized. Finally,
at 315◦ or NW the field is again left circularly polarized. At intermediate angles the field is elliptically
polarized.

5–9 Arrays of Two Isotropic Point Sources

Let us introduce the subject of arrays of point sources by considering the simplest situation, namely, that of
two isotropic point sources. As illustrations, five cases involving two isotropic point sources are discussed.

Case 1. Two Isotropic Point Sources of Same Amplitude and Phase

The first case we shall analyze is that of two isotropic point sources having equal amplitudes and oscillating in
the same phase. Let the two point sources, 1 and 2, be separated by a distance d and located symmetrically with
respect to the origin of the coordinates as shown in Fig. 5−15a. The angle φ is measured counterclockwise

Figure 5–15 (a) Relation to coordinate system of two isotropic point sources separated by a
distance d. (b) Vector addition of the fields from two isotropic point sources of equal amplitude
and same phase located as in (a). (c) Field pattern of two isotropic point sources of equal
amplitude and same phase located as in (a) for the case where the separation d = λ/2.

from the positive x axis. The origin of the coordinates is taken as the reference for phase. Then at a distant
point in the direction φ the field from source 1 is retarded by 1

2dr cos φ, while the field from source 2 is
advanced by 1

2dr cos φ, where dr is the distance between the sources expressed in radians; that is,

dr = 2πd

λ
= βd
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The total field at a large distance r in the direction φ is then

E = E0e
−jψ/2 + E0e

+jψ/2 (1)

where ψ = dr cos φ and the amplitude of the field components at the distance r is given by E0.
The first term in (1) is the component of the field due to source 1 and the second term the component due

to source 2. Equation (1) may be rewritten

E = 2E0
e+jψ/2 + e−jψ/2

2
(2)

which by a trigonometric identity is

E = 2E0 cos
ψ

2
= 2E0 cos

(
dr

2
cos φ

)
(3)

This result may also be obtained with the aid of the vector diagram1 shown in Fig. 5−15b, from which (3)
follows directly. We note in Fig. 5−15b that the phase of the total field E does not change as a function of ψ .
To normalize (3), that is, make its maximum value unity, set 2E0 = 1. Suppose further that d is λ/2. Then
dr = π . Introducing these conditions into (3) gives

E = cos

(
π

2
cos φ

)
(4)

The field pattern of E versus φ as expressed by (4) is presented in Fig. 5−15c. The pattern is a bidirectional
figure-of-eight with maxima along the y axis. The space pattern is doughnut-shaped, being a figure-of-
revolution of this pattern around the x axis.

The same pattern can also be obtained by locating source 1 at the origin of the coordinates and source 2
at a distance d along the positive x axis as indicated in Fig. 5−16a. Taking now the field from source 1 as
reference, the field from source 2 in the direction φ is advanced by dr cos φ. Thus, the total field E at a large
distance r is the vector sum of the fields from the two sources as given by

E = E0 + E0e
+jψ (5)

where ψ = dr cos φ.
The relation of these fields is indicated by the vector diagram of Fig. 5−16b. From the vector diagram the

magnitude of the total field is

E = 2E0 cos
ψ

2
= 2E0 cos

dr cos φ

2
(6)

as obtained before in (3). The phase of the total field E is, however, not constant in this case but is ψ/2, as
also shown by rewriting (5) as

E = E0(1 + ejψ) = 2E0e
jψ/2

(
ejψ/2 + e−jψ/2

2

)
= 2E0e

jψ/2 cos
ψ

2
(7)

Normalizing by setting 2E0 = 1, (7) becomes

E = ejψ/2 cos
ψ

2
= cos

ψ

2
\ψψ/2 (8)

1It is to be noted that the quantities represented here by vectors are not true space vectors but merely vector representations of the time
phase (i.e., phasors).
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E0 (from source 1)
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(b)
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0� 90� 180�
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Rotation around source 1

Rotation around center point of array

Figure 5–16 (a) Two isotropic point sources with the origin of the coordinate system
coincident with one of the sources. (b) Vector addition of the fields from two isotropic point
sources of equal amplitude and same phase located as in (a). (c) Phase of total field as a
function of φ for two isotropic point sources of same amplitude and phase spaced λ/2 apart.
The phase change is zero when referred to the center point of the array but is ψ/2 as shown by
the dashed curve when referred to source 1.

In (8) the cosine factor gives the amplitude variation of E, and the exponential or angle factor gives the phase
variation with respect to source 1 as the reference. The phase variation for the case of λ/2 spacing (dr = π) is
shown by the dashed line in Fig. 5−16c. Here the phase angle with respect to the phase of source 1 is given by
ψ/2 = (π/2) cos φ. The magnitude variation for this case has already been presented in Fig. 5−15c. When
the phase is referred to the point midway between the sources (Fig. 5−15a), there is no phase change around
the array as shown by the solid line in Fig. 5−16c. Thus, an observer at a fixed distance observes no phase
change when the array is rotated (with respect to φ) around its midpoint, but a phase change (dashed curve of
Fig. 5−16c) is observed if the array is rotated with source 1 as the center of rotation.

Case 2. Two Isotropic Point Sources of Same Amplitude but Opposite Phase

This case is identical with the one we have just considered except that the two sources are in opposite phase
instead of in the same phase. Let the sources be located as in Fig. 5−15a. Then the total field in the direction
φ at a large distance r is given by

E = E0e
+jψ/2 − E0e

−jψ/2 (9)

from which

E = 2jE0 sin
ψ

2
= 2jE0 sin

(
dr

2
cos φ

)
(10)



“c05” — 2010/3/22 — page 103 — #18

5–9 Arrays of Two Isotropic Point Sources 103

whereas in Case 1 (3) involves the cosine of ψ/2, (10) for Case 2 involves the sine. Equation (10) also includes
an operator j , indicating that the phase reversal of one of the sources in Case 2 results in a 90◦ phase shift of
the total field as compared with the total field for Case 1. This is unimportant here. Thus, putting 2jE0 = 1
and considering the special case of d = λ/2, (10) becomes

E = sin

(
π

2
cos φ

)
(11)

The directions φm of maximum field are obtained by setting the argument of (11) equal to ±(2k + 1)π/2.
Thus,

π

2
cos φm = ±(2k + 1)

π

2
(11a)

where k = 0, 1, 2, 3 . . . . For k = 0, cos φm = ±1 and φm = 0◦ and 180◦.
The null directions φ0 are given by

π

2
cos φ0 = ±kπ (11b)

For k = 0, φ0 = ±90◦.
The half-power directions are given by

π

2
cos φ = ±(2k + 1)

π

4
(11c)

For k = 0, φ = ±60◦, ±120◦.
The field pattern given by (11) is shown in Fig. 5−17. The pattern is a relatively broad figure-of-eight

with the maximum field in the same direction as the line joining the sources (x axis). The space pattern is a
figure-of-revolution of this pattern around the x axis. The two sources, in this case, may be described as a
simple type of “end-fire” array. In contrast to this pattern, the in-phase point sources produce a pattern with
the maximum field normal to the line joining the sources, as shown in Fig. 5−15c. The two sources for this
case may be described as a simple “broadside” type of array.

1 2
� � 0�

30�

60�

90�

�
2

Figure 5–17 Relative field pattern for two isotropic point sources of the same amplitude but
opposite phase, spaced λ/2 apart.
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Case 3. Two Isotropic Point Sources of the Same Amplitude and In-Phase Quadrature

Let the two point sources be located as in Fig. 5−15a. Taking the origin of the coordinates as the reference
for phase, let source 1 be retarded by 45◦ and source 2 advanced by 45◦.

Then the total field in the direction φ at a large distance r is given by

E = E0 exp

[
+j

(
dr cos φ

2
+ π

4

)]
+ E0 exp

[
−j

(
dr cos φ

2
+ π

4

)]
(12)

From (12) we obtain

E = 2E0 cos

(
π

4
+ dr

2
cos φ

)
(13)

Letting 2E0 = 1 and d = λ/2, (13) becomes

E = cos

(
π

4
+ π

2
cos φ

)
(14)

The field pattern given by (14) is presented in Fig. 5−18. The space pattern is a figure-of-revolution of this
pattern around the x axis. Most of the radiation is in the second and third quadrants. It is interesting to note
that the field in the direction φ = 0◦ is the same as in the direction φ = 180◦. The directions φm of maximum
field are obtained by setting the argument of (14) equal to kπ , where k = 0, 1, 2, 3 . . . . In this way we obtain

π

4
+ π

2
cos φm = kπ (15)

For k = 0,

π

2
cos φm = −π

4
(16)

0�

30�

60�

90�
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120�

180�

�
2

1 2
� �

Figure 5–18 Relative field pattern of two isotropic point sources of the same amplitude and
in phase quadrature for a spacing of λ/2. The source to the right leads that to the left by 90◦.
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and

φm = 120◦ and 240◦ (17)

If the spacing between the sources is reduced to λ/4, (13) becomes

E = cos

(
π

4
+ π

4
cos φ

)
(18)

The field pattern for this case is illustrated by Fig. 5−19a. It is a cardioid-shaped, unidirectional pattern with
maximum field in the negative x direction. The space pattern is a figure-of-revolution of this pattern around
the x axis.

A simple method of determining the direction of maximum field is illustrated by Fig. 5−19b. As indicated
by the vectors, the phase of source 2 is 0◦ (vector to right) and the phase of source 1 is 270◦ (vector down).
Thus, source 2 leads source 1 by 90◦.

To find the field radiated to the left, imagine that we start at source 2 (phase 0◦) and travel to the left, riding
with the wave (phase 0◦) like a surfer rides a breaker. The phase of the wave we are riding is 0◦ and does not
change but by the time we have traveled λ/4 and arrived at source 1, a 1

4 -period has elapsed so the current
in source 1 will have advanced 90◦ (vector rotated ccw) from 270◦ to 0◦, making its phase the same as that
of the wave we are riding, as in the middle diagram of Fig. 5−19b. Thus, the field of the wave from source
2 reinforces that of the field of source 1, and the two fields travel to the left together in phase producing a
maximum field to the left which is twice the field of either source alone.

Now imagine that we start at source 1 with phase 270◦ (vector down) and travel to the right. By the time
we arrive at source 2 the phase of its field has advanced from 0 to 90◦ so it is in phase opposition and cancels
the field of the wave we are riding, as in the bottom diagram in Fig. 5−19b, resulting in zero radiation to the
right.

Case 4. General Case of Two Isotropic Point Sources of Equal Amplitude and Any Phase Difference

Proceeding now to a more general situation, let us consider the case of two isotropic point sources of equal
amplitude but of any phase difference δ. The total phase difference ψ between the fields from source 2 and
source 1 at a distant point in the direction φ (see Fig. 5−16a) is then

ψ = dr cos φ + δ (19)

Taking source 1 as the reference for phase, the positive sign in (19) indicates that source 2 is advanced in
phase by the angle δ. A minus sign would be used to indicate a phase retardation. If, instead of referring the
phase to source 1, it is referred to the centerpoint of the array, the phase of the field from source 1 at a distant
point is given by −ψ/2 and that from source 2 by +ψ/2. The total field is then

E = E0(e
jψ/2 + e−jψ/2) = 2E0 cos

ψ

2
(20)

Normalizing (20), we have the general expression for the field pattern of two isotropic sources of equal
amplitude and arbitrary phase,

E = cos
ψ

2
(21)

where ψ is given by (19). The three cases we have discussed are obviously special cases of (21). Thus, Cases
1, 2, and 3 are obtained from (21) when δ = 0◦, 180◦, and 90◦ respectively.
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Figure 5–19 (a) Relative field pattern of two isotropic sources of same amplitude and
in-phase quadrature for a spacing of λ/4. Source 2 leads source 1 by 90◦. (b) Vector diagrams
illustrating field reinforcement in the −x direction and field cancellation in the +x direction.

Case 5. Most General Case of Two Isotropic Point Sources of Unequal Amplitude and Any Phase
Difference

A still more general situation, involving two isotropic point sources, exists when the amplitudes are unequal
and the phase difference is arbitrary. Let the sources be situated as in Fig. 5−20a with source 1 at the origin.
Assume that the source 1 has the larger amplitude and that its field at a large distance r has an amplitude of E0.
Let the field from source 2 be of amplitude aE0 (0 ≤ a ≤ 1) at the distance r . Then, referring to Fig. 5−20b,
the magnitude and phase angle of the total field E is given by

E = E0

√
(1 + a cos ψ)2 + a2 sin2 ψ

/[a sin ψ/(1 + a cos ψ)] (22)

where ψ = dr cos φ + δ and the phase angle (\ ) is referred to source 1. This is the phase angle ξ shown
in Fig. 5−20b.
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Figure 5–20 (a) Two isotropic point sources of unequal amplitude and arbitrary phase with
respect to the coordinate system. (b) Vector addition of fields from unequal sources arranged as
in (a). The amplitude of source 2 is assumed to be smaller than that of source 1 by the factor a.

5–10 Nonisotropic but Similar Point Sources and the Principle of Pattern
Multiplication

The cases considered in the preceding section all involve isotropic point sources. These can readily be extended
to a more general situation in which the sources are nonisotropic but similar.

The word similar is here used to indicate that the variation with absolute angle φ of both the amplitude
and phase of the field is the same.1 The maximum amplitudes of the individual sources may be unequal. If,
however, they are also equal, the sources are not only similar but are identical.

d

�
1 2

Short
dipoles

y

x

Figure 5–21 Two nonisotropic sources
with respect to the coordinate system.

As an example, let us reconsider Case 4 of Sec. 5−9
in which the sources are identical, with the modification
that both sources 1 and 2 have field patterns given by

E0 = E′
0 sin φ (1)

Patterns of this type might be produced by short

dipoles oriented parallel to the x axis as suggested by
Fig. 5−21. Substituting (1) in (5−9−20) and normalizing
by setting 2E′

0 = 1 gives the field pattern of the array as

E = sin φ cos
ψ

2
(2)

where ψ = dr cos φ + δ

This result is the same as obtained by multiplying the pattern of the individual source (sin φ) by the pattern
of two isotropic point sources (cos ψ/2).

If the similar but unequal point sources of Case 5 (Sec. 5−9) have patterns as given by (1), the total
normalized pattern is

E = sin φ

√
(1 + a cos ψ)2 + a2 sin2 ψ (3)

Here again, the result is the same as that obtained by multiplying the pattern of the individual source by the
pattern of an array of isotropic point sources.

1The patterns not only must be of the same shape but also must be oriented in the same direction to be called “similar.”
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These are examples illustrating the principle of pattern multiplication, which may be expressed as follows:

The field pattern of an array of nonisotropic but similar point sources is the product of the pattern of
the individual source and the pattern of an array of isotropic point sources having the same locations,
relative amplitudes, and phase as the nonisotropic point sources.

This principle may be applied to arrays of any number of sources provided only that they are similar. The
individual nonisotropic source or antenna may be of finite size but can be considered as a point source situated
at the point in the antenna to which phase is referred. This point is said to be the “phase center.”

The above discussion of pattern multiplication has been concerned only with the field pattern or magnitude
of the field. If the field of the nonisotropic source and the array of isotropic sources vary in phase with space
angle, i.e., have a phase pattern which is not a constant, the statement of the principle of pattern multiplication
may be extended to include this more general case as follows:

The total field pattern of an array of nonisotropic but similar sources is the product of the individual source pattern
and the pattern of an array of isotropic point sources each located at the phase center of the individual source and
having the same relative amplitude and phase, while the total phase pattern is the sum of the phase patterns of the
individual source and the array of isotropic point sources.

The total phase pattern is referred to the phase center of the array. In symbols, the total field E is then

E = f (θ, φ)F (θ, φ)
Field pattern

/
fp(θ, φ) + Fp(θ, φ)

Phase pattern

(4)

where
f (θ, φ) = field pattern of individual source

fp(θ, φ) = phase pattern of individual source

F(θ, φ) = field pattern of array of isotropic sources

Fp(θ, φ) = phase pattern of array of isotropic sources

The patterns are expressed in (4) as a function of both polar angles to indicate that the principle of pattern
multiplication applies to space patterns as well as to the two-dimensional cases we have been considering.

To illustrate the principle, let us apply to it two special modifications of Case 1 (Sec. 5−9).

EXAMPLE 5–10.1 Assume two identical point sources separated by a distance d , each source having
the field pattern given by (1) as might be obtained by two short dipoles arranged as in Fig. 5−21. Let
d = λ/2 and the phase angle δ = 0. Then the total field pattern is

E = sin φ cos

(
π

2
cos φ

)
(5)

This pattern is illustrated by Fig. 5−22c as the product of the individual source pattern (sin φ) shown
at (a) and the array pattern {cos[(π/2) cos φ]} as shown at (b). The pattern is sharper than it was in Case
1 (Sec. 5−9) for the isotropic sources. In this instance, the maximum field of the individual source is
in the direction φ = 90◦, which coincides with the direction of the maximum field for the array of two
isotropic sources.
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Figure 5–22 Example of pattern multiplication. Two nonisotropic but identical point
sources of the same amplitude and phase, spaced λ/2 apart and arranged as in Fig. 5−21,
produce the pattern shown at (c). The individual source has the pattern shown at (a), which,
when multiplied by the pattern of an array of two isotropic point sources (of the same
amplitude and phase) as shown at (b), yields the total array pattern of (c).

EXAMPLE 5–10.2 Let us consider next the situation

�
1 2

Short
dipoles

y

x
�

2

Figure 5–23 Array of two nonisotropic
sources with respect to the coordinate system.

in which d = λ/2 and δ = 0 as in Example 5−10.1
but with individual source patterns given by

E0 = E′
0 cos φ (6)

This type of pattern might be produced by short
dipoles oriented parallel to the y axis as in Fig. 5−23.
Here the maximum field of the individual source is
in the direction (φ = 0) of a null from the array,
while the individual source has a null in the direc-
tion (φ=90◦) of the pattern maximum of the array.
By the principle of pattern multiplication the total
normalized field is

(b)(a) (c)

Figure 5–24 Example of pattern multiplication. Total array pattern (c) as the product of
pattern (a) of individual nonisotropic source and pattern (b) of array of two isotropic sources.
The pattern (b) for the array of two isotropic sources is identical with that of Fig. 5−22b, but
the individual source pattern (a) is rotated through 90◦ with respect to the one in Fig. 5−22a.
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E = cos φ cos

(
π

2
cos φ

)
(7)

The total array pattern in the xy plane as given by (7) is illustrated in Fig. 5−24c as the product of the
individual source pattern (cos φ) shown at (a) and the array pattern {cos[(π/2) cos φ]} shown at (b). The
total array pattern in the xy plane has four lobes with nulls at the x and y axes.

The above examples illustrate two applications of the principle of pattern multiplication to arrays in which
the source has a simple pattern. However, in the more general case the individual source may represent an
antenna of any complexity provided that the amplitude and phase of its field can be expressed as a function of
angle, that is to say, provided that the field pattern and the phase pattern with respect to the phase center are
known. If only the total field pattern is desired, phase patterns need not be known provided that the individual
sources are identical.

If the arrays in the above examples are parts of still larger arrays, the smaller arrays may be regarded as
nonisotropic point sources in the larger array—another application of the principle of pattern multiplication
yielding the complete pattern. In this way the principle of pattern multiplication can be applied n times to
find the patterns of arrays of arrays of arrays.

5–11 Example of Pattern Synthesis by Pattern Multiplication

The principle of pattern multiplication, discussed in the preceding section, is of great value in pattern synthesis.
By pattern synthesis is meant the process of finding the source or array of sources that produces a desired
pattern. Theoretically an array of isotropic point sources can be found that will produce any arbitrary pattern.
This process is not always simple and may yield an array that is difficult or impossible to construct. A simpler,
less elegant approach to the problem of antenna synthesis is by the application of pattern multiplication to
combinations of practical arrays, the combination which best approximates the desired pattern being arrived
at by a trial-and-error process.

Uniform maximum
N

S

W E

NW

SW

NE

Null

Null
(a)

(b)

Figure 5–25 (a) Requirements for
pattern of broadcast station and (b)
idealized pattern fulfilling them.

To illustrate this application of pattern
multiplication, let us consider the follow-
ing hypothetical problem. A broadcasting
station (in the 500- to 1500-kHz frequency
band) requires a pattern in the horizontal
plane fulfilling the conditions indicated in
Fig. 5−25a. The maximum field intensity,
with as little variation as possible, is to be
radiated in the 90◦ sector between north-
west and northeast. No nulls in the pattern
can occur in this sector. However, nulls may
occur in any direction in the complementary
270◦ sector, but, as an additional require-
ment, nulls must be present in the due east
and the due southwest directions in order to
prevent interference with other stations in
these directions. An idealized sector-shaped
pattern fulfilling those requirements is illustrated in Fig. 5−25b. The antenna producing this pattern is to con-
sist of an array of four vertical towers. The currents in all towers are to be equal in magnitude, but the phase
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may be adjusted to any relationship. There is also no restriction on the spacing or geometrical arrangement
of the towers.

Since we are interested only in the horizontal plane pattern, each tower may be considered as an isotropic
point source. The problem then becomes one of finding a space and phase relation of four isotropic point
sources located in the horizontal plane which fulfills the above requirements.

Figure 5–26 Arrangement of two
isotropic point sources for both primary
and secondary arrays.

The principle of pattern multiplication will be applied to
the solution of this problem by seeking the patterns of two
pairs of isotropic sources which yield the desired pattern
when multiplied together. First let us find a pair of isotropic
sources whose pattern fulfills the requirements of a broad
lobe of radiation with maximum north and a null southwest.
This will be called the “primary” pattern.

Two isotropic sources phased as an end-fire array can pro-
duce a pattern with a broader major lobe than when phased
as a broadside array (for example, compare Figs. 5−15c and
5−19). Since a broad lobe to the north is desired, an end-fire
arrangement of two isotropic sources as shown in Fig. 5−26
will be tried.

From a consideration of pattern shapes as a function of
separation and phase, a spacing between λ/4 and 3λ/8 appears suitable (see Fig. 6−30). (See Brown-1,
Terman-1, and Smith-1.) Accordingly, let d = 0.3λ. Then the field pattern for the array is

E = cos
ψ

2
(1)

where

ψ = 0.6π cos φ + δ (2)

For there to be a null in the pattern of (1) at φ = 135◦, it is necessary that1

ψ = (2k + 1)π (3)

where k = 0, 1, 2, 3, . . .

Equating (2) and (3) then gives

−0.6π
1√
2

+ δ = (2k + 1)π (4)

or

δ = (2k + 1)π + 0.425π (5)

For k = 0, δ = −104◦. The pattern for this case (d = 0.3λ and δ = −104◦) is illustrated by Fig. 5−27a.
Next, let us find the array of two isotropic point sources that will produce a pattern that fulfills the

requirements of a null at φ = 270◦ and that also has a broad lobe to the north. This will be called the
“secondary” pattern. This pattern multiplied by the primary array pattern will then yield the total array

1The azimuth angle φ (Fig. 5−26) is measured counterclockwise (ccw) from the north. This is consistent with the engineering practice
of measuring positive angles in a counterclockwise sense. However, it should be noted that the geodetic azimuth angle of a point is
measured in the opposite, or clockwise (cw), sense from the reference direction, which is sometimes taken as south and sometimes as
north.
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pattern. If the secondary isotropic sources are also arranged as in Fig. 5−26 and have a phase difference of
180◦, there is a null at φ = 270◦. Let the spacing d = 0.6λ. Then the secondary pattern is given by (1) where

ψ = 1.2π cos φ + π (6)

The pattern is illustrated by Fig. 5−27b. By the principle of pattern multiplication, the total array pattern is
the product of this pattern and the primary array pattern, or

E = cos(54◦ cos φ − 52◦) cos(108◦ cos φ + 90◦) (7)

This pattern, which is illustrated by Fig. 5−27c, satisfies the pattern requirements. The complete array is
obtained by replacing each of the isotropic sources of the secondary pattern by the two-source array producing
the primary pattern. The midpoint of each primary array is its phase center, so this point is placed at the location
of a secondary source. The complete antenna is then a linear array of four isotropic point sources as shown
in the lower part of Fig. 5−27, where now each source represents a single vertical tower. All towers carry the
same current. The current of tower 2 leads tower 1 and the current of tower 4 leads tower 3 by 104◦, while the
current in towers 1 and 3 and 2 and 4 are in phase opposition. The relative phase of the current is illustrated
by the vectors in the lower part of Fig. 5−27c.

The solution obtained is only one of an infinite number of possible solutions involving four towers. It is,
however, a satisfactory and practical solution to the problem.

The phase variation ξ around the primary, secondary, and total arrays is shown in Figs. 5−28a, b, and c
with the phase center at the centerpoint of each array and also at the southernmost source. The arrangement
of the arrays with their phase centers is illustrated in Fig. 5−28d for both cases.
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Total array pattern
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3
2

4

Total array
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Figure 5–27 Field patterns of primary and secondary arrays of two isotropic sources which
multiplied together give pattern of total array of four isotropic sources.
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5–12 Nonisotropic and Dissimilar Point Sources

In Sec. 5−10 nonisotropic but similar point sources were discussed, and it was shown that the principle of
pattern multiplication could be applied. However, if the sources are dissimilar, this principle is no longer
applicable and the fields of the sources must be added at each angle φ for which the total field is calculated.
Thus, for two dissimilar sources 1 and 2 situated on the x axis with source 1 at the origin and the sources
separated by a distance d (same geometry as Fig. 5−20) the total field is in general

E = E1 + E2 = E0

√
[f (φ) + aF(φ) cos ψ]2 + [aF(φ) sin ψ]2/

fp(φ) + arctan[aF(φ) sin ψ/(f (φ) + aF(φ) cos ψ)] (1)
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Figure 5–28 Phase patterns of primary, secondary and total arrays having the field patterns
shown in Fig. 5−27. Phase patterns are given for the phase center at the midpoint of the array
and at the southernmost source, the arrangement of the arrays and the phase centers being
shown at (d ). The phase angle ξ is adjusted to zero at φ = 0 in all cases.
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Figure 5–28 Continued.

where the field from source 1 is taken as

E1 = E0f (φ)
/
fp(φ) (2)

and from source 2 as

E2 = aE0F(φ)
/
Fp(φ) + dr cos φ + δ (3)

where

E0 = constant
a = ratio of maximum amplitude of source 2 to source 1(0 ≤ a ≤ 1)

ψ = dr cos φ + δ − fp(φ) + Fp(φ), where
δ = relative phase of source 2 with respect to source 1
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f (φ) = relative field pattern of source 1
fp(φ) = phase pattern of source 1
F(φ) = relative field pattern of source 2

Fp(φ) = phase pattern of source 2

In (1) the phase angle (/ ) is referred to the phase of the field from source 1 in some reference direction
(φ = φ0).

d

1 2
x

y

�

Figure 5–29 Relation of two
nonisotropic dissimilar sources to
coordinate system.

In the special case where the field patterns are identical but
the phase patterns are not, a = 1, and

f (φ) = F(φ) (4)

from which
E = 2E0f (φ) cos

ψ

2

/
fp(φ) + ψ/2 (5)

where phase is again referred to source 1 in some reference
direction φ0.

As an illustration of nonisotropic, dissimilar point sources,
let us consider an example in which the field from source 1 is
given by

E1 = cos φ/0 (6)

90�

270�

180� 0�

�

1 2

Figure 5–30 Field pattern of array of
two nonisotropic dissimilar sources of
Fig. 5−29 for d = λ/4 and δ = 90◦.

and from source 2 by

E2 = sin φ
/
ψ (7)

where ψ = dr cos φ + δ

The relation of the two sources to the coordinate system
and the individual field patterns is shown in Fig. 5−29.
Source 1 is located at the origin. The total field E is then
the vector sum of E1 and E2, or

E = cos φ + sin φ
/
ψ (8)

Let us consider the case for λ/4 spacing (d = λ/4) and
phase quadrature of the sources (δ = π/2). Then

ψ = π

2
(cos φ + 1) (9)

The calculation for this case is easily carried out by graphi-
cal vector addition. The resulting field pattern for the total
field E of the array is presented in Fig. 5−30, and the
resulting phase pattern for the angle ξ is given in Fig. 5−31.
The angle ξ is the phase angle between the total field and
the field of source 1 in the direction φ = 0.

5–13 Linear Arrays of n Isotropic Point Sources of Equal Amplitude and
Spacing

Introduction

Let us now proceed to the case of n isotropic point sources of equal amplitude and spacing arranged as a linear
array, as indicated in Fig. 5−32, where n is any positive integer. The total field E at a large distance in the
direction φ is given by

E = 1 + ejψ + ej2ψ + ej3ψ + · · · + ej (n−1)ψ (1)
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Figure 5–31 Phase pattern of array having field pattern of Fig. 5−30. The phase angle ξ is
with respect to source 1 as phase center.

where ψ is the total phase difference of the fields from adjacent sources as given by

ψ = 2πd

λ
cos φ + δ = dr cos φ + δ (2)

d cos �

To distant point

� � 90�
 � � 0�

� � 0
�

�

1 2 3 4 5 n

d d d

Figure 5–32 Arrangement of linear
array of n isotropic point sources.

where δ is the phase difference of adjacent sources, i.e.,
source 2 with respect to 1, 3 with respect to 2, etc.
(Schelkunoff-1, Stratton-1).

The amplitudes of the fields from the sources are all
equal and taken as unity. Source 1 (Fig. 5−32) is the
phase reference. Thus, at a distant point in the direction
φ the field from source 2 is advanced in phase with respect
to source 1 by ψ , the field from source 3 is advanced in
phase with respect to source 1 by 2ψ , etc.

Equation (1) is a geometric series. Each term repre-
sents a phasor, and the amplitude of the total field E and
its phase angle ξ can be obtained by phasor (vector) addi-
tion as in Fig. 5−33. Analytically, E can be expressed in
a simple trigonometric form which we now develop as
follows:
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Figure 5–33 (a) Vector addition of fields at a large distance from the linear array of five
isotropic point sources of equal amplitude with source 1 as the phase center (reference for
phase). (b) Same, but with midpoint of array (source 3) as phase center.
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Multiply (1) by ejψ , giving

Eejψ = ejψ + ej2ψ + ej3ψ + · · · + ejnψ (3)

Now subtract (3) from (1) and divide by 1 − ejψ , yielding

E = 1 − ejnψ

1 − ejψ
(4)

Equation (4) may be rewritten as

E = ejnψ/2

ejψ/2

(
ejnψ/2 − e−jnψ/2

ejψ/2 − e−jψ/2

)
(5)

from which

E = ejξ sin(nψ/2)

sin(ψ/2)
= sin(nψ/2)

sin(ψ/2)

/
ξ (6)

where ξ is referred to the field from source 1. The value of ξ is given by

ξ = n − 1

2
ψ (7)

If the phase is referred to the centerpoint of the array, (6) becomes

E = sin(nψ/2)

sin(ψ/2)
(8)

In this case the phase pattern is a step function as given by the sign of (8). The phase of the field is constant
wherever E has a value but changes sign when E goes through zero.

When ψ = 0, (6) or (8) is indeterminate so that for this case E must be obtained as the limit of (8) as ψ

approaches zero. Thus, for ψ = 0 we have the relation that

E = n (8a)

This is the maximum value that E can attain. Hence, the normalized value of the total field for Emax = n is

E = 1

n

sin(nψ/2)

sin(ψ/2)
(9)

The field as given by (9) will be referred to as the “array factor.” Values of the array factor as obtained from (9)
for various numbers of sources are presented in Fig. 5−34. If ψ is known as a function of φ, then the field
pattern can be obtained directly from Fig. 5−34.

We may conclude from the above discussion that the field from the array will be a maximum in any direction
φ for which ψ = 0. Stated in another way, the fields from the sources all arrive at a distant point in the same
phase when ψ = 0. In special cases, ψ may not be zero for any value of φ, and in this case the field is usually
a maximum at the minimum value of ψ .

To illustrate some of the properties of linear arrays (9) will now be applied to several special cases. See
programs on the book’s web site involving these different cases. See also discussion in Appendix C.

Case 1. Broadside Array (Sources in Phase)

The first case is a linear array of n isotropic sources of the same amplitude and phase. Therefore, δ = 0 and

ψ = dr cos φ (10)
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Figure 5–34 Universal field-pattern chart for arrays of various numbers n of isotropic point
sources of equal amplitude and spacing.

To make ψ = 0 requires that φ = (2k+1)(π/2), where k = 0, 1, 2, 3, . . . . The field is, therefore, a maximum
when

φ = π

2
and

3π

2
(10a)

That is, the maximum field is in a direction normal to the array. Hence, this condition, which is characterized
by in-phase sources (δ = 0), results in a “broadside” type of array.

As an example, the pattern of a broadside array of four in-phase isotropic point sources of equal amplitude
is shown in Fig. 5−35a. The spacing between sources is λ/2.1 The field pattern in rectangular coordinates
and the phase patterns for this array are presented in Fig. 5−35a.

Case 2. Ordinary End-Fire Array

Let us now find the phase angle between adjacent sources that is required to make the field a maximum in the
direction of the array (φ = 0). An array of this type may be called an “end-fire” array. For this we substitute
the conditions ψ = 0 and φ = 0 into (2), from which

δ = −dr (11)

Hence, for an end-fire array, the phase between sources is retarded progressively by the same amount as the
spacing between sources in radians. Thus, if the spacing is λ/4, source 2 in Fig. 5−32 should lag source 1 by
90◦, source 3 should lag source 2 by 90◦, etc.

As an example, the field pattern of an end-fire array of four isotropic point sources is presented in Fig. 5−36a.
The spacing between sources is λ/2 and δ = −π . The field pattern in rectangular coordinates and the phase
patterns are shown in Fig. 5−36b. The same shape of field pattern is obtained in this case if δ = +π since,
with d = λ/2, the pattern is bidirectional. However, if the spacing is less than λ/2, the maximum radiation
is in the direction φ = 0 when δ = −dr and in the direction φ = 180◦ when δ = +dr .

1If the spacing between elements exceeds λ, sidelobes appear which are equal in amplitude to the main (center) lobe. These are called
grating lobes (see Sec. 19−6)
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Figure 5–35 (a) Field pattern of broadside array of four isotropic point sources of the same
amplitude and phase. The spacing between sources is λ/2. (b) Field pattern in rectangular
coordinates and phase patterns of same array with phase center at midpoint and at source 1.
The reference direction for phase is at φ = 90◦.

Figure 5–36 (a) Field pattern of ordinary end-fire array of four isotropic point sources of
same amplitude. Spacing is λ/2 and the phase angle δ = −π . (b) Field pattern in rectangular
coordinates and phase patterns of same array with phase center at midpoint and at source 1.
The reference direction for phase is at φ = 0.

Case 3. End-Fire Array with Increased Directivity

The situation discussed in Case 2, namely, for δ = −dr , produces a maximum field in the direction φ = 0
but does not give the maximum directivity. It has been shown by Hansen (1) and Woodyard that a larger
directivity is obtained by increasing the phase change between sources so that

δ = −
(

dr + π

n

)
(12)
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This condition will be referred to as the condition for “increased directivity.” Thus for the phase difference
of the fields at a large distance we have

ψ = dr(cos φ − 1) − π

n
(13)

As an example, the field pattern of an end-fire array of four isotropic point sources for this case is illustrated
in Fig. 5−37.
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Figure 5–37 Field pattern of end-fire array of
four isotropic point sources of equal amplitude
spaced λ/2 apart. The phasing is adjusted for
increased directivity (δ = − 5

4π ).

The spacing between sources is λ/2, and
therefore δ = −(5π/4). Hence, the conditions
are the same as for the array with the pattern
of Fig. 5−36, except that the phase difference
between sources is increased by π/4. Compar-
ing the field patterns of Figs. 5−36a and 5−37,
it is apparent that the additional phase difference
yields a considerably sharper main lobe in the
direction φ = 0. However, the back lobes in this
case are excessively large because the large value
of spacing results in too great a range in ψ .

To realize the directivity increase afforded by
the additional phase difference requires that |ψ |
be restricted in its range to a value of π/n at
φ= 0 and a value in the vicinity of π at φ=180◦.
This can be fulfilled if the spacing is reduced. For
example, the field pattern of an end-fire array of
10 isotropic point sources of equal amplitude and
spaced λ/4 apart is presented in Fig. 5−38a for
the phase condition giving increased directivity
(δ = −0.6π ). In contrast to this pattern, one is
presented in Fig. 5−38b for the identical antenna
with the phasing of an ordinary end-fire array (δ = −0.5π ). Both patterns are plotted to the same maximum.
The increased directivity is apparent from the greater sharpness of the pattern. Integrating the pattern, including
the minor lobes, the directivity is found to be about 19 and of the ordinary endfire about 11. The beamwidths
and directivities for the two cases are compared in Table 5−2.

Table 5–2 Comparison of end-fire arrays

Ordinary end-fire End-fire array with
array increased directivity

Beamwidth between half-power points 69◦ 38◦
Beamwidth between first nulls 106◦ 74◦
Directivity 11 19

The maximum of the field pattern of Fig. 5−38a occurs at φ = 0 and ψ = −π/n. In general, any increased
directivity end-fire array, with maximum at ψ = −π/n, has a normalized field pattern given by

E = sin

(
π

2n

)
sin(nψ/2)

sin(ψ/2)
(14)
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or 10.4 dBi

Ordinary end fire

(a) (b)

Array

Figure 5–38 Field patterns of end-fire arrays of 10 isotropic point sources of equal amplitude
spaced λ/4 apart. The pattern at (a) has the phase adjusted for increased directivity
(δ = −0.6π ), while the pattern at (b) has the phasing of an ordinary end-fire array (δ = −0.5π ).

Case 4. Array with Maximum Field in an Arbitrary Direction. Scanning Array

Let us consider the case of an array with a field pattern having a maximum in some arbitrary direction φ1 not
equal to kπ/2 where k = 0, 1, 2, or 3. Then (2) becomes

0 = dr cos φ1 + δ (15)

By specifying the spacing dr , the required phase difference δ is then determined by (15). Conversely, by
changing δ the beam direction φ1 can be shifted or scanned.

As an example, suppose that n = 4, d = λ/2, and that we wish to have a maximum field in the direction of
φ = 60◦. Then δ = −π/2, yielding the field pattern shown in Fig. 5−39.
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5–14 Null Directions for Arrays of n Isotropic Point Sources of Equal
Amplitude and Spacing

In this section simple methods are discussed for finding the directions of the pattern nulls of the arrays
considered in Sec. 5−13.

Following the procedure given by Schelkunoff (2, 3) the null directions for an array of n isotropic point
sources of equal amplitude and spacing occur when E = 0 or, provided that the denominator of Eq. (5−13−4)
is not zero, when

ejnψ = 1 (1)

0�180�

60�90�

270�
300�

1 2 3 4

d d d

Array

2
�

d �

Figure 5–39 Field pattern of array of
four isotropic point sources of equal
amplitude with phasing adjusted to give the
maximum at φ = 60◦. The spacing is λ/2.

Equation (1) requires that

nψ = ±2Kπ (2)

where K = 1, 2, 3, . . .

Equating the value of ψ in (2) to its value in Eq.
(5−13−2) gives

ψ = dr cos φ0 + δ = ±2Kπ

n
(3)

Thus,

φ0 = arccos

[(
±2Kπ

n
− δ

)
1

dr

]
(4)

where φ0 gives the direction of the pattern nulls. Note
that values of K must be excluded for which K = mn,
where m = 1, 2, 3, . . . . Thus, if K = mn, (2) reduces
to ψ = ±2mπ and the denominator of Eq. (5−13−4)
equals zero so that the null condition of (1), that the
numerator of Eq. (5−13−4) be zero, is insufficient.

In a broadside array δ = 0, so that for this case (4)
becomes

φ0 = arccos

(
±2Kπ

ndr

)
= arccos

(
±Kλ

nd

)
(5)

As an example, the field pattern of Fig. 5−35 (n = 4, d = λ/2, δ = 0) has the null directions

φ0 = arccos

(
±K

2

)
(6)

For K = 1, φ0 = ±60◦ and ±120◦, and for K = 2, φ0 = 0◦ and 180◦. These are the six null directions for
this array.

If φ0 in (3) is replaced by its complementary angle γ0 (see Fig. 5−32), then (5) becomes

γ0 = arcsin

(
±Kλ

nd

)
(7)

If the array is long, so that nd � Kλ,

γ0 � ±Kλ

nd
(8)
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The first nulls either side of the maximum occur for K = 1. These angles will be designated γ01. Thus,

γ01 � ± λ

nd
(9)

and the total beamwidth of the main lobe between first nulls for a long broadside array is then

2γ01 � 2λ

nd
(10)

For the field pattern in Fig. 5−35 this width is exactly 60◦, while as given by (10) it is 1 rad, or 57.3◦. This
pattern is for an array 2λ long. The agreement would be better with longer arrays.

Turning next to end-fire arrays, the condition for an ordinary end-fire array is that δ = −dr . Thus, for this
case (3) becomes

cos φ0 − 1 = ±2Kπ

ndr

(11)

from which we obtain

φ0

2
= arcsin

(
±

√
Kπ

ndr

)
(12)

or

φ0 = 2 arcsin

(
±

√
Kλ

2nd

)
(13)

As an example, the field pattern of Fig. 5−36 (n = 4, d = λ/2, δ = −π) has the null directions

φ0 = 2 arcsin

(
±

√
K

4

)
(14)

For K = 1, φ0 = ±60◦; for K = 2, φ0 = ±90◦, etc.
If the array is long, so that nd � Kλ, (13) becomes

φ0 � ±
√

2Kλ

nd
(15)

The first nulls either side of the main lobe occur for K = 1. These angles will be designated φ01. Thus,

φ01 � ±
√

2λ

nd
(16)

and the total beamwidth of the main lobe between first nulls for a long ordinary end-fire array is then

2φ01 � 2

√
2λ

nd
(17)

For the field pattern in Fig. 5−36 this width is exactly 120◦, while as given by (17) it is 2 rad, or 115◦.
For end-fire arrays with increased directivity as proposed by Hansen (1) and Woodyard, the condition is

that δ = −(dr + π/n). Thus, for this case (3) becomes

dr(cos φ0 − 1) − π

n
= ±2

Kπ

n
(18)

from which

φ0

2
= arcsin

[
±

√
π

2ndr

(2K − 1)

]
(19)
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or

φ0 = 2 arcsin

[
±

√
λ

4nd
(2K − 1)

]
(20)

If the array is long, so that nd � Kλ, (20) becomes

φ0 � ±
√

λ

nd
(2K − 1) (21)

The first nulls either side of the main lobe, φ01, occur for K = 1. Thus,

φ01 � ±
√

λ

nd
(22)

and the total beamwidth of the main lobe between first nulls for a long end-fire array with increased directivity
is then

2φ01 � 2

√
λ

nd
(23)

This width is 1/
√

2, or 71 percent, of the width of the ordinary end-fire array. As an example, the ordinary
end-fire array pattern of Fig. 5−38b has a beamwidth between first nulls of 106◦. The width of the pattern in
Fig. 5−38a for the array with increased directivity is 74◦, or 70 percent as much.

Table 4.3 lists the formulas for null directions and beamwidths for the different arrays considered above.
The null directions in column 2 apply to arrays of any length. The formulas in the third and fourth columns
are approximate and apply only to long arrays.

The formulas in Table 5−3 have been used to calculate the curves presented in Fig. 5−40. These curves
show the beamwidth between first nulls as a function of ndλ for three types of arrays: broadside, ordinary
end-fire, and end-fire with increased directivity. The quantity ndλ(=nd/λ) is approximately equal to the
length of the array in wavelengths for long arrays. The exact value of the array length is (n − 1)dλ.

The beamwidth of long broadside arrays is inversely proportional to the array length, whereas the
beamwidth of long end-fire types is inversely proportional to the square root of the array length. Hence,

Table 5–3 Null directions and beamwidths between first nulls for linear arrays of n isotropic point
sources of equal amplitude and spacing. (For n ≥ 2. The angles in columns 3 and 4 are expressed
in radians. To convert to degrees, multiply by 57.3)

Beamwidth
between

Type of Null directions Null directions first nulls
array (array any length) (long array) (long array)

General case φ0 = arccos

[(±2Kπ

n
− δ

)
1

d r

]

Broadside γ0 = arcsin

(
±Kλ

nd

)
γ0 � ±Kλ

nd
2γ01 � 2λ

nd

Ordinary end-fire φ0 = 2 arcsin

(
±

√
Kλ

2nd

)
φ0 � ±

√
2Kλ

nd
2φ01 � 2

√
2λ

nd

End-fire with increased
directivity (Hansen and
Woodyard)

φ0 = 2 arcsin

[
±

√
λ

4nd
(2K − 1)

]
φ0 � ±

√
λ

nd
(2K − 1) 2φ01 � 2

√
λ

nd
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Figure 5–40 Beamwidth between first nulls as a function of nd λ for arrays of n isotropic point
sources of equal amplitude. For long arrays, ndλ is approximately equal to the array length.

the beamwidth in the plane of a long linear broadside array is much smaller than for end-fire types of the
same length as shown by Fig. 5−40. It should be noted, however, that the broadside array has a disk-shaped
pattern with a narrow beamwidth in a plane through the array axis but a circular pattern (360◦ beamwidth) in
the plane normal to the array axis. On the other hand, the end-fire array has a cigar-shaped pattern with the
same beamwidth in all planes through the array axis.

5–15 Linear Broadside Arrays with Nonuniform Amplitude Distributions.
General Considerations

Let us begin by comparing the field patterns of four amplitude distributions, namely, uniform, binomial, edge,
and optimum. To be specific, we will consider a linear array of five isotropic point sources with λ/2 spacing.
If the sources are in phase and all equal in amplitude, we may calculate the pattern as discussed in Sec. 5−13
the result being as shown in Fig. 5−41 by the pattern

Table 5–4
Relative amplitudes

n (Pascal’s triangle)
3 1 2 1
4 1 3 3 1
5 1 4 6 4 1
6 1 5 10 10 5 1

designated uniform. A uniform distribution yields
the maximum directivity or gain. The pattern has
a half-power beamwidth of 23◦, but the side lobes
are relatively large. The amplitude of the first side
lobe is 24 percent of the main-lobe maximum. In
some applications this minor-lobe amplitude may
be undesirably large.

To reduce the Side-Lobe Level (SLL) of linear
in-phase broadside arrays, John Stone Stone (1) pro-
posed that the sources have amplitudes proportional
to the coefficients of a binomial series of the form

(a + b)n−1 = an−1 + (n − 1)an−2b + (n − 1)(n − 2)

2! a(n−3)b2 + · · · (1)
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where n is the number of sources. Thus, for arrays of three to six sources the relative amplitudes are given by
Table 5−4, where the amplitudes are arranged as in Pascal’s triangle (any inside number is equal to the sum
of the adjacent numbers in the row above).

Applying the binomial distribution to the array of five sources spaced λ/2 apart, the sources have the
relative amplitudes 1, 4, 6, 4, 1. The resulting pattern, designated binomial, is shown in Fig. 5−41. Methods
of calculating such patterns are discussed in the next section. The pattern has no minor lobes, but this has
been achieved at the expense of an increased beamwidth (31◦). For spacings of λ/2 or less between elements,
the minor lobes are eliminated by Stone’s binomial distribution. However, the increased beamwidth and the
large ratio of current amplitudes required in large arrays are disadvantages.

Table 5–5
Half-power Minor-lobe amplitude

Type of distribution beamwidth (% of major lobe)

Binomial 31◦ 0
Edge 15◦ 100

At the other extreme from the binomial dis-
tribution, we might try an edge distribution
in which only the end sources of the array
are supplied with power, the three central
sources being either omitted or inactive. The
relative amplitudes of the five-source array
are, accordingly, 1, 0, 0, 0, 1. The array has,
therefore, degenerated to two sources 2λ apart
and has the field pattern designated as edge
in Fig. 5−41. The beamwidth between half-
power points of the “main” lobe (normal to the array) is 15◦, but “minor” lobes are the same amplitude as the
“main” lobe.

Comparing the binomial and edge distributions for the five-source array with λ/2 spacing, we have
Table 5−5.

Although for most applications it would be desirable to combine the 15◦ beamwidth of the edge distribution
with the zero side-lobe level of the binomial distribution, this combination is not possible. However, if the
distribution is between the binomial and the edge type, a compromise between the beamwidth and the side-
lobe level can be made; i.e., the side-lobe level will not be zero, but the beamwidth will be less than for
the binomial distribution. An amplitude distribution of this nature for linear in-phase broadside arrays
was proposed by Dolph (1) which has the further property of optimizing the relation between beamwidth
and side-lobe level; i.e., if the side-lobe level is specified, the beamwidth between first nulls is minimized;
or, conversely, if the beamwidth between first nulls is specified, the side-lobe level is minimized. Dolph’s
distribution is based on the properties of the Tchebyscheff polynomials and accordingly will be referred to as
the Dolph-Tchebyscheff or optimum distribution.

Applying the Dolph-Tchebyscheff distribution to our array of five sources with λ/2 spacing, let us specify
a side-lobe level 20 dB below the main lobe, i.e., a minor-lobe amplitude 10 percent of the main lobe. The
relative amplitude distribution for this side-lobe level is 1, 1.6, 1.9, 1.6, 1 and yields the pattern designated
optimum in Fig. 5−41. Methods of calculating the distribution and pattern are discussed in the next section.
The beamwidth between half-power points is 27◦, which is less than for the binomial distribution. Smaller
beamwidths can be obtained only by raising the side-lobe level. The Dolph-Tchebyscheff distribution includes
all distributions between the binomial and the edge. In fact, the binomial and edge distributions are special
cases of the Dolph-Tchebyscheff distribution, the binomial distribution corresponding to an infinite ratio
between main- and side-lobe levels and the edge distribution to a ratio of unity. The uniform distribution is,
however, not a special case of the Dolph-Tchebyscheff distribution.

Referring to Fig. 5−41, we may draw a number of general conclusions regarding the relation between
patterns and amplitude distributions. We note that if the amplitude tapers to a small value at the edge of the
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Five source array in order of decreasing side-lobe level
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Figure 5–41 Normalized field patterns of broadside arrays of five isotropic point sources
spaced λ/2 apart. All sources are in the same phase, but the relative amplitudes have four
different distributions: edge, uniform, optimum, and binomial. Only the upper half of the pattern
is shown. The relative amplitudes of the five sources are indicated in each case by the array
below the pattern, the height of the line at each source being proportional to its amplitude. All
patterns are adjusted to the same maximum amplitude.

array (binomial distribution), minor lobes can be eliminated. On the other hand, if the distribution has an
inverse taper with maximum amplitude at the edges and none at the center of the array (edge distribution), the
minor lobes are accentuated, being in fact equal to the “main” lobe. From this we may quite properly conclude
that the side-lobe level is closely related to the abruptness with which the amplitude distribution ends at the
edge of the array. An abrupt discontinuity in the distribution results in large minor lobes, while a gradually
tapered distribution approaching zero at the edge minimizes the discontinuity and the minor-lobe amplitude.
In the next section, we shall see that the abrupt discontinuity produces large higher “harmonic” terms in
the Fourier series representing the pattern. On the other hand, these higher harmonic terms are small when
the distribution tapers gradually to a small value at the edge. There is an analogy between this situation
and the Fourier analysis of wave shapes. Thus, a square wave has relatively large higher harmonics, whereas
a pure sine wave has none, the square wave being analogous to the uniform array distribution while the pure
sine wave is analogous to the binomial distribution.

The preceding discussion has been concerned with arrays of discrete sources separated by finite distances.
However, the general conclusions concerning amplitude distributions which we have drawn can be extended
to large arrays of continuous distributions of an infinite number of point sources, such as might exist in the case
of a continuous current distribution on a metal sheet or in the case of a continuous field distribution across the
mouth of an electromagnetic horn or across a parabolic reflector antenna. If the amplitude distribution follows
a Gaussian error curve, which is similar to a binomial distribution for discrete sources, then minor lobes are
absent but the beamwidth is relatively large. An increase of amplitude at the edge reduces the beamwidth but
results in minor lobes, as we have seen. Thus, in the case of a high-gain parabolic reflector type of antenna,
the illumination of the reflector by the primary antenna is usually arranged to taper toward the edge of the
parabola. However, a compromise is generally made between beamwidth and side-lobe level so that the
illumination is not zero at the edge but has an appreciable value as in a Dolph-Tchebyscheff distribution.
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Chapter 6
Electric Dipoles, Thin
Linear Antennas and
Arrays of Dipoles and

Apertures

Topics in this chapter include:

Fields of Short dipole
Radiation resistance of Short dipole
Thin linear antenna: λ/2, λ, and 3 λ/2

Radiation resistance of λ/2 dipole

Arrays of two λ/2 dipoles

Broadside, end-fire and close-spaced arrays

Radiation resistance at a point which is not a
current maximum

Traveling wave antennas

Arrays of two driven elements; broadside and
end-fire

Patterns, driving point impedance and gain

Arrays of two driven elements; general case

Closely spaced elements

Radiation efficiency

Arrays of n driven elements

Horizontal and vertical antennas above ground

Shaped dipole arrays

Phased arrays

Grid and chain arrays

Digital beam-forming or adaptive or smart
arrays

Long-wire antennas: V, Rhombic and
Beverage

Curtain arrays

Arrays feed points

Folded dipoles

6–1 Introduction

This chapter first develops the concepts of electric dipoles and thin linear antennas. Later it is extended to
the arrays of dipoles and apertures. The essential background for this later part is covered in chap. 5 on point
sources and their arrays. The dipoles referred to herein are mostly thin linear dipoles, whereas the apertures
in general may be helices, horns, big reflectors or arrays of dipoles (arrays of arrays).

The far or radiation field pattern, the driving point impedance and the array gains are first derived in that
order for several different arrays of dipoles. The method of analysis is general and applicable to other dipole
arrays; the specific types discussed are merely examples. Array gain is calculated by treating the dipoles as
circuit elements having self and mutual impedances. Although direct pattern integration could be used to
determine the gain, the circuit approach is simpler provided impedance values are available (patterns having
been utilized in the impedence calculations).

156
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6–2 The Short Electric Dipole

Since any linear antenna may be considered as consisting of a large number of very short conductors connected
in series, it is of interest to examine first the radiation properties of short conductors. From a knowledge of
properties of short conductors, we can then proceed to a study of long linear conductors such as are commonly
employed in practice.

A short linear conductor is often called a short dipole. In the following discussion, a short dipole is always
of finite length even though it may be very short. If the dipole is vanishingly short, it is an infinitesimal dipole.

Transmission
line

d

End plate provides
loading with little
effect on pattern

(a)

I IL L

(b)

�q

�q

Figure 6–1 A short dipole
antenna (a) and its equivalent (b).

Let us consider a short dipole such as shown in Fig. 6–1a.
The lengthL is very short compared to the wavelength (L� λ).
Plates at the ends of the dipole provide capacitive loading.
The short length and the presence of these plates result in a
uniform current I along the entire length L of the dipole. The
dipole may be energized by a balanced transmission line, as
shown. It is assumed that the transmission line does not radiate
and, therefore, its presence will be disregarded. Radiation from
the end plates is also considered to be negligible. The diameter
d of the dipole is small compared to its length (d � L). Thus,
for purposes of analysis we may consider that the short dipole
appears as in Fig. 6–1b. Here it consists simply of a thin con-
ductor of length L with a uniform current I and point charges
q at the ends. The current and charge are related by

z

L
E�

y

Dipole

x

�

r

P

Er

E�

�

Figure 6–2 Relation of dipole to
coordinates.

dq

dt
= I (1)

6–3 The Fields of a Short Dipole

Let us now proceed to find the fields everywhere around a short
dipole. Let the dipole of length L be placed coincident with
the z axis and with its center at the origin as in Fig. 6–2. The
relation of the electric field components, Er, Eθ and Eφ , is then
as shown. It is assumed that the medium surrounding the dipole
is air or vacuum.

In dealing with antennas or radiating systems, the propaga-
tion time is a matter of great importance. Thus, if a current is
flowing in the short dipole of Fig. 6–3, the effect of the current is
not felt instantaneously at the point P , but only after an interval
equal to the time required for the disturbance to propagate over
the distance r . We have already recognized this in Chap. 5 in
connection with the pattern of arrays of point sources, but here
we are more explicit and describe it as a retardation effect.

Accordingly, instead of writing the current I as1

I = I0e
jωt (1)

1It is assumed that we take either the real (cos ωt) or imaginary (sin ωt) part of ejωt .
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y

z
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Dipole

�

Figure 6–3a Geometry for short dipole.

which implies instantaneous propagation of the effect of the
current, we introduce the propagation (or retardation) time
as done by Lorentz and write

[I ] = I0e
jω[t−(r/c)] (2)

where [I ] is called the retarded current. Specifically,
the retardation time r/c results in a phase retardation
ωr/c = 2πf r/c radians = 360◦ f r/c = 360◦ t/T , where
T = 1/f = time of one period or cycle (seconds) and f =
frequency (hertz, Hz = cycles per second). The brackets may
be added as in (2) to indicate explicitly that the effect of the
current is retarded.

Equation (2) is a statement of the fact that the disturbance
at a time t and at a distance r from a current element is caused
by a current [I ] that occurred at an earlier time t − r/c. The
time difference r/c is the interval required for the distur-
bance to travel the distance r , where c is the velocity of light
(= 300 Mm s−1).

Electric and magnetic fields can be expressed in terms of vector and scalar potentials. Since we will be
interested not only in the fields near the dipole but also at distances which are large compared to the wavelength,
we must use retarded potentials, i.e., expressions involving t − r/c. For a dipole located as in Fig. 6–2 or
Fig. 6–3a, the retarded vector potential of the electric current has only one component, namely, Az. Its value
is

Az = μ0

4π

∫ L/2

−L/2

[I ]
s

dz (2)

where [I ] is the retarded current given by

[I ] = I0e
jω[t−(s/c)] (3a)

In (3) and (3a),

z = distance to a point on the conductor
I0 = peak value in time of current (uniform along dipole)
μ0 = permeability of free space = 4π × 10−7 H m−1

If the distance from the dipole is large compared to its length (r � L) and if the wavelength is large compared
to the length (λ � L), we can put s = r and neglect the phase differences of the field contributions from
different parts of the wire. The integrand in (3) can then be regarded as a constant, so that (3) becomes

Az = μ0LI0e
jω[t−(r/c)]

4πr
(4)

The retarded scalar potential V of a charge distribution is

V = 1

4πε0

∫
V

[ρ]
s

dτ (5)

where [ρ] is the retarded charge density given by

[ρ] = ρ0e
jω[t−(s/c)] (6)
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and dτ = infinitesimal volume element
ε0 = permittivity or dielectric constant of free space = 8.85 × 10−12 F m−1

Since the region of charge in the case of the dipole being considered is confined to the points at the ends
as in Fig. 6–1b, (5) reduces to

V = 1

4πε0

{ [q]
s1

− [q]
s2

}
(7)

L

s1

s2

r

Dipole

To
point
P

�

L
2
cos �

L
2
cos �

Figure 6–3b Relations for short
dipole when r � L.

From (6–1–1) and (3a),

[q] =
∫

[I ] dt = I0

∫
ejω[t−(s/c)] dt = [I ]

jω
(8)

Substituting (8) into (7),

V = I0

4πε0jω

[
ejω[t−(s1/c)]

s1
− ejω[t−(s2/c)]

s2

]
(9)

Referring to Fig. 6–3b, when r � L, the lines connecting
the ends of the dipole and the point P may be considered
as parallel so that

s1 = r − L

2
cos θ (10)

and

s2 = r + L

2
cos θ (11)

Substituting (10) and (11) into (9), it may be shown that the fields of a short electric dipole are:

(12)

(13)

Electric fields
of short dipole

Er = I0L cos θejω[t−(r/c)]

2πε0

(
1

cr2
+ 1

jωr3

)

Eθ = I0L sin θejω[t−(r/c)]

4πε0

(
jω

c2r
+ 1

cr2
+ 1

jωr3

) General
case

In obtaining (12) and (13) the relation was used that μ0ε0 = 1/c2, where c = velocity of light.
Turning our attention now to the magnetic field, this may be calculated from curl of A as follows:

∇ × A = r̂

r sin θ

[
∂(sin θ)Aφ

∂θ
− ∂(Aθ )

∂φ

]
+ θ̂

r sin θ

[
∂Ar

∂φ
− ∂(r sin θ)Aφ

∂r

]

+ φ̂

r

[
∂(rAθ )

∂r
− ∂Ar

∂θ

]
(14)

Since Aφ = 0, the first and fourth terms of (14) are zero, since Ar and Aθ are independent of φ, so that the
second and third terms of (14) are also zero. Thus, only the last two terms contribute, so that ∇ × A, and
hence also H, have only a φ component. Thus,
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(15)

(16)

Magnetic fields
of short dipole

|H| = Hφ = I0L sin θejω[t−(r/c)]

4π

(
jω

cr
+ 1

r2

)

Hr = Hθ = 0

General
case

Thus, the fields from the dipole have only three components Er, Eθ and Hφ . The components Eφ, Hr and Hθ

are everywhere zero.
When r is very large, the terms in 1/r2 and 1/r3 in (12), (13), and (15) can be neglected in favor of the

terms in 1/r . Thus, in the far field Er is negligible, and we have effectively only two field components, Eθ

and Hφ , given by

(17)

(18)

Electric and
magnetic
fields of
short dipole

Eθ = jωI0L sin θejω[t−(r/c)]

4πε0c2r
= j

I0βL

4πε0cr
sin θejω[t−(r/c)]

Hφ = jωI0L sin θejω[t−(r/c)]

4πcr
= j

I0βL

4πr
sin θejω[t−(r/c)]

Far-field
case

Taking the ratio of Eθ to Hφ as given by (17) and (18), we obtain

Eθ

Hφ

= 1

ε0c
=

√
μ0

ε0
= 376.7 � Impedance of space (19)

This is the intrinsic impedance of free space (a pure resistance). It is a very important constant.
Comparing (17) and (18) we note that Eθ and Hφ are in time phase in the far field. We note also that the field

patterns of both are proportional to sin θ . The pattern is independent of φ, so that the space pattern is doughnut-
shaped, being a figure-of-revolution of the pattern in Fig. 6–4a about the axis of the dipole. Referring to the

Dipole Dipole

(a) (b)

Figure 6–4 Near- and far-field
patterns of Eθ and Hφ

components for short dipole (a)
and near-field pattern of Er

component (b).

near-field expressions given by (12), (13) and (15), we note that for
a small r the electric field has two components Er and Eθ , which
are both in time-phase quadrature with the magnetic field, as in
a resonator. At intermediate distances, Eθ and Er can approach
time-phase quadrature so that the total electric field vector rotates
in a plane parallel to the direction of propagation, thus exhibiting
the phenomenon of cross-field. For the Eθ and Hφ components,
the near-field patterns are the same as the far-field patterns, being
proportional to sin θ (Fig. 6–4a). However, the near-field pattern
for Er is proportional to cos θ as indicated by Fig. 6–4b. The space
pattern for Er is a figure-of-revolution of this pattern around the
dipole axis.

Let us now consider the situation at very low frequencies. This
will be referred to as the quasi-stationary, or dc case. Since from

[I ] = I0e
jω[t−(r/c)] = jω[q] (20)
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(12) and (13) can be rewritten as

Er = [q]L cos θ

2πε0

(
jω

cr2
+ 1

r3

)
(21)

and

Eθ = [q]L sin θ

4πε0

(
− ω2

c2r
+ jω

cr2
+ 1

r3

)
(22)

The magnetic field is given by (15) as

Hφ = [I ]L sin θ

4π

(
jω

cr
+ 1

r2

)
(23)

At low frequencies, ω approaches zero so that the terms with ω in the numerator can be neglected. As ω → 0,
we also have

[q] = q0e
jω[t−(r/c)] = q0 (24)

and

[I ] = I0 (25)

Thus, for the quasi-stationary, or dc, case, the field components become from (21), (22) and (23)

(26)

(27)

(28)

Electric and magnetic
fields of short dipole

Er = q0L cos θ

2πε0r3

Eθ = q0L sin θ

4πε0r3

Hφ = I0L sin θ

4πr2

Low-frequency case

The restriction that r � L still applies.
The expressions for the electric field, (26) and (27), are identical to those obtained in electrostatics for the

field of two point charges, +q0 and −q0, separated by a distance L. The relation for the magnetic field, (28),
may be recognized as the Biot-Savart relation for the magnetic field of a short element carrying a steady
or slowly varying current. Since in the expressions for the quasi-stationary case the fields decrease as 1/r2

or 1/r3, the fields are confined to the vicinity of the dipole and there is negligible radiation. In the general
expressions for the fields, (21), (22) and (23), it is the 1/r terms which are important in the far field and hence
take into account the radiation.

The expressions for the fields from a short dipole developed above are summarized in Table 6–1.
Setting

|A| = 1

2rλ

|B| = 1

4πr2
λ

|C| = 1

8π2r3
λ
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Table 6–1 Fields of a short electric dipole†

GeneraI Quasi-
Component expression Far field stationary

Er

[I ]L cos θ

2πε0

(
1

c r2
+ 1

jωr3

)
0

q 0L cos θ

2πε0r3

Eθ

[I ]L sin θ

4πε0

(
jω

c 2r
+ 1

c r2
+ 1

jωr3

) [I ]Ljω sin θ

4πε0c 2r
= j60π [I ] sin θ

r

L

λ

q 0L sin θ

4πε0r3

Hφ

[I ]L sin θ

4π

(
jω

c r
+ 1

r2

) [I ]Ljω sin θ

4πc r
= j [I ] sin θ

2r

L

λ

I0L sin θ

4πr2

†The restriction applies that r � L and λ � L. The quantities in the table are in SI units, that is, E in volts per meter, H in amperes per meter, I in
amperes, r in meters, etc. [I ] is as given by (20). Three of the field components of an electric dipole are everywhere zero, that is,

Eφ = Hr = Hθ = 0

for the three components of Eθ , their variation with distance is as shown in Fig. 6–5. For rλ greater than the
radian distance [1/(2π)], component A of the electric field is dominant, for rλ less than the radian distance
component C of the electric field is dominant, while at the radian distance only B contributes (= π ) because
although |A| = |B| = |C| = π, A and C are in phase opposition and cancel.
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Figure 6–5 Variation of the magnitudes of the components of Eθ of a short electric dipole as
a function of distance (r/λ). The magnitudes of all components equal π at the radian distance
1/(2π ). At larger distances energy is mostly radiated, at smaller distances mostly stored.
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For the special case where θ = 90◦ (perpendicular to the dipole in the xy plane of Fig. 6–2) and at
rλ � 1/(2π),

|Hφ | = I0Lλ

2r
(A m−1) (29)

while at rλ � 1/(2π),

|Hφ | = I0L

4πr2
(30)

which is identical to the relation for the magnetic field perpendicular to a short linear conductor carrying
direct current as given by (28).

The magnetic field at any distance r from an infinite linear conductor with direct current is given by

Hφ = I0

2πr
(31)

which is Ampere’s law.
Remarkably, the magnitude of the magnetic field in the equatorial plane (θ = 90◦) in the far field of an

oscillating λ/2 dipole is identical to (31) (Ampere’s law). It is assumed that the current distribution on the
λ/2 dipole is sinusoidal. This is discussed in more detail in Sec. 6–5.

Rearranging the three field components of Table 6–1 for a short electric dipole, we have

Er = [I ]LλZ cos θ

λ

[
1

2πr2
λ

− j
1

4π2r3
λ

]
(32)

Eθ = [I ]LλZ sin θ

λ

[
j

1

2rλ
+ 1

4πr2
λ

− j
1

8π2r3
λ

]
(33)

Hφ = [I ]Lλ sin θ

λ

[
j

1

2rλ
+ 1

4πr2
λ

]
(34)

We note that the constant factor in each of the terms in brackets differs from the factors of adjacent terms by
a factor of 2π .

At the radian distance (rλ = 1/2π) the fields of (32), (33) and (34) reduce to

Er = 2
√

2π [I ]LλZ cos θ

λ

/− 45◦ (35)

Eθ = π [I ]LλZ sin θ

λ
(36)

Hφ =
√

2π [I ]Lλ sin θ

λ

/
45◦ (37)

The magnitude of the average power flux or Poynting vector in the θ direction is given by

Sθ = 1
2 Re ErH

∗
φ = 1

2ErHφ Re 1
/− 90◦ = 1

2ErHφ cos(−90◦) = 0 (38)

indicating that no power is transmitted. However, the product ErHφ represents imaginary or reactive energy
that oscillates back and forth from electric to magnetic energy twice per cycle.
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In like manner the magnitude of the power flux or Poynting vector in the r direction is given by

Sr = 1
2EθHφ cos(−45◦) = 1

2
√

2
EθHφ (39)

indicating energy flow in the r direction.
Much closer to the dipole [rλ � 1/(2π)], (32), (33) and (34) reduce approximately to

Er = −j
[I ]LλZ cos θ

4π2λr3
λ

(40)

Eθ = −j
[I ]LλZ sin θ

8π2λr3
λ

(41)

Hφ = [I ]Lλ sin θ

4πλr2
λ

(42)

From these equations it is apparent that Sr = Sθ = 0. However, the products ErHφ and EθHφ represent
imaginary or reactive energy oscillating back and forth but not going anywhere. Thus, close to the dipole
there is a region of almost complete energy storage.

Remote from the dipole [rλ � 1/(2π)], (32), (33) and (34) reduce approximately to

Er = 0 (43)

Eθ = j
[I ]LλZ sin θ

2λrλ
(44)

Hφ = j
[I ]Lλ sin θ

2λrλ
(45)

Since Er = 0, there is no energy flow in the θ direction (Sθ = 0). However, since EθHφ are in time phase,
their product represents real power flow in the outward radial direction. This power is radiated.

Many antennas behave like the dipole with large energy storage close to the antenna.
The region near the dipole is one of stored energy (reactive power) while regions remote from the dipole

are ones of radiation. The radian sphere at rλ = 1/(2π) marks a zone of transition from one region to the
other with a nearly equal division of the imaginary and real (radiated) power.

The region close to the dipole may be likened to a spherical resonator within which pulsating energy is
trapped, but with some leakage which is radiated. There is no exact boundary to this resonator region, but if
we arbitrarily put it at the radian distance a qualitative picture may be sketched as in Fig. 6–6.

6–4 Radiation Resistance of Short Electric Dipole

Let us now calculate the radiation resistance of the short dipole of Fig. 6–1b. This may be done as follows.
The Poynting vector of the far field is integrated over a large sphere to obtain the total power radiated. This
power is then equated to I 2R where I is the rms current on the dipole and R is a resistance, called the radiation
resistance of the dipole.

The average Poynting vector is given by

S = 1
2 Re(E × H ∗) (1)

The far-field components are Eθ and Hφ so that the radial component of the Poynting vector is
Sr = 1

2 Re EθH
∗
φ (2)

where Eθ and H ∗
φ are complex.
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Energy storage

Radian sphere
resonator

Radiation Radiation

Dipole

Figure 6–6 Sketch suggesting that within the radian sphere at r = λ/2π = 0.16λ the
situation is like that inside a resonator with high-density pulsating energy accompanied by
leakage which is radiated.

The far-field components are related by the intrinsic impedance of the medium. Hence,

Eθ = HφZ = Hφ

√
μ

ε
(3)

Thus, (2) becomes

Sr = 1
2 Re ZHφH ∗

φ = 1
2 |Hφ |2 Re Z = 1

2 |Hφ |2
√

μ

ε
(4)

The total power P radiated is then

P =
∫ ∫

Sr ds = 1

2

√
μ

ε

∫ 2π

0

∫ π

0
|Hφ |2r2 sin θ dθ dφ (5)

where the angles are as shown in Fig. 6–2 and |Hφ | is the absolute value of the magnetic field, which from
(6–3–18) is

|Hφ | = ωI0L sin θ

4πcr
(6)

Substituting this into (5), we have

P = 1

32

√
μ

ε

β2I 2
0 L2

π2

∫ 2π

0

∫ π

0
sin3 θ dθ dφ (7)

The double integral equals 8π/3 and (7) becomes

P =
√

μ

ε

β2I 2
0 L2

12π
(8)

This is the average power or rate at which energy is streaming out of a sphere surrounding the dipole. Hence,
it is equal to the power radiated. Assuming no losses, it is also equal to the power delivered to the dipole.
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Therefore, P must be equal to the square of the rms current I flowing on the dipole times a resistance Rr

called the radiation resistance of the dipole. Thus,√
μ

ε

β2I 2
0 L2

12π
=

(
I0√

2

)2

Rr (9)

Solving for Rr ,

Rr =
√

μ

ε

β2L2

6π
(10)

For air or vacuum
√

μ/ε = √
μ0/ε0 = 377 = 120π� so that (10) becomes1

Dipole with
uniform current Rr = 80π2

(
L

λ

)2

= 80π2L2
λ = 790L2

λ (�)
Radiation
resistance

(11)

As an example suppose that Lλ = 1
10 . Then Rr = 7.9 �. If Lλ = 0.01, then Rr = 0.08 �. Thus, the

radiation resistance of a short dipole is small.
In developing the field expressions for the short dipole, which were used in obtaining (11), the restriction

was made that λ � L. This made it possible to neglect the phase difference of field contributions from different
parts of the dipole. If Lλ = 1

2 we violate this assumption, but, as a matter of interest, let us find what the
radiation resistance of a λ/2 dipole is, when calculated in this way. Then for Lλ = 1

2 , we obtain Rr = 197 �.
The correct value is 168 � (see Prob. 6–6–1), which indicates the magnitude of the error introduced by
violating the restriction that λ � L to the extent of taking L = λ/2.

It has been assumed that with end loading (see Fig. 6–1a) the dipole current is uniform. However, with no
end loading the current must be zero at the ends and, if the dipole is short, the current tapers almost linearly
from a maximum at the center to zero at the ends, as in Fig. 2–12, with an average value of 1

2 of the maximum.
Modifying (8) for the general case where the current is not uniform on the dipole, the radiated power is

P =
√

μ

ε

β2I 2
avL

2

12π
(W) (12)

where Iav = amplitude of average current on dipole (peak value in time)
The power delivered to the dipole is, as before,

P = 1
2I 2

0 Rr (W) (13)

where I0 = amplitude of terminal current of center-fed dipole (peak value in time). Equating the power
radiated (12) to the power delivered (13) yields, for free space (μ = μ0 and ε = ε0), a radiation resistance

Rr = 790

(
Iav

I0

)2

L2
λ (�) (14)2

1√μ0/ε0 = 376.73 �. 377 and 120π are convenient approximations.
2 As already given by (2–10–9).
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For a short dipole without end loading, we have Iav = 1
2I0, as noted above, and (14) becomes

Rr = 197L2
λ (�) (15)

6–5 The Thin Linear Antenna

In this section expressions for the far-field patterns of thin linear antennas will be developed. It is assumed that
the antennas are symmetrically fed at the center by a balanced two-wire transmission line. The antennas may
be of any length, but it is assumed that the current distribution is sinusoidal. Current-distribution measurements
indicate that this is a good assumption provided that the antenna is thin, i.e., when the conductor diameter is
less than, say, λ/100. Thus, the sinusoidal current distribution approximates the natural distribution on thin
antennas. Examples of the approximate natural-current distributions on a number of thin, linear center-fed
antennas of different length are illustrated in Fig. 6–7. The currents are in phase over each λ/2 section and in
opposite phase over the next.

Referring to Fig. 6–8, let us now proceed to develop the far-field equations for a symmetrical, thin, linear,
center-fed antenna of length L. The retarded value of the current at any point z on the antenna referred to a
point at a distance s is

[I ] = I0 sin

[
2π

λ

(
L

2
± z

)]
ejω[t−(r/c)] (1)

In (1) the function

sin

[
2π

λ

(
L

2
± z

)]

is the form factor for the current on the antenna. The expression (L/2) + z is used when z < 0 and (L/2) − z

is used when z > 0. By regarding the antenna as made up of a series of infinitesimal dipoles of length dz, the
field of the entire antenna may then be obtained by integrating the fields from all of the dipoles making up
the antenna with the result1

�
2

3
4

� 5
4

� 3
2

�� 2�

Figure 6–7 Approximate natural-current distribution for thin, linear, center-fed antennas of
various lengths.

1For complete development, see the second edition of this book, pp. 220–221.
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L

I0

To
distant
point

z

dz

s

r

z

y

�

Figure 6–8 Relations for symmetrical, thin, linear, center-fed antenna of length L.

(2)

(3)

Far fields of

center-fed dipole

Hφ = j [I0]
2πr

[
cos[(βL cos θ)/2] − cos(βL/2)

sin θ

]

Eθ = j60[I0]
r

[
cos[(βL cos θ)/2] − cos(βL/2)

sin θ

]

where [I0] = I0e
jω[t−(r/c)] and

Eθ = 120πHφ (3a)

Equations (2), (3) and (3a) give the far fields Hφ and Eθ of a symmetrical, center-fed, thin linear antenna of
length L. The shape of the far-field pattern is given by the factor in the brackets. The factors preceding the
brackets in (2) and (3) give the instantaneous magnitude of the fields as functions of the antenna current and
the distance r . To obtain the rms value of the field, we let [I0] equal the rms current at the location of the
current maximum. There is no factor involving phase in (2) or (3), since the center of the antenna is taken as
the phase center. Hence any phase change of the fields as a function of θ will be a jump of 180◦ when the
pattern factor changes sign.

As examples of the far-field patterns of linear center-fed antennas, three antennas of different lengths will
be considered. Since the amplitude factor is independent of the length, only the relative field patterns as given
by the pattern factor will be compared.
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EXAMPLE 6–5.1 λ/2 Antenna
When L = λ/2, the pattern factor becomes

E = cos[(π/2) cos θ ]
sin θ

(4)

This pattern is shown in Fig. 6–9a. It is only slightly more directional than the pattern of an infinitesimal
or short dipole which is given by sin θ. The beamwidth between half-power points of the λ/2 antenna is
78◦ as compared to 90◦ for the short dipole.

�/2 antenna
�

Rr � 73 �

Rr � 106 �

�

2

3 �/2 antenna

�

�

�

�

�

�

3
2

�

(a)

(c)

(b)

� antenna

Rr     2000 ��

78�

47�

Figure 6–9 Three-dimensional and polar plots of the patterns of λ/2, λ, and 3 λ/2 antennas.
The antennas are center-fed with current distributions assumed sinusoidal as indicated.
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EXAMPLE 6–5.2 Full-Wave (λ) Antenna
When L = λ, the pattern factor becomes

E = cos(π cos θ) + 1

sin θ
(5)

This pattern is shown in Fig. 6–9b. The half-power beamwidth is 47◦.

EXAMPLE 6–5.3 Three Half-Wave (3λ/2) Antenna
When L = 3 λ/2, the pattern factor is

E = cos
( 3

2π cos θ
)

sin θ
(6)

The pattern for this case is presented in Fig. 6–9c. With the midpoint of the antenna as phase center, the
phase shifts 180◦ at each null, the relative phase of the lobes being indicated by the + and − signs. In all
three cases, (a), (b) and (c), the space pattern is a figure-of-revolution of pattern shown around the axis
of the antenna.

EXAMPLE 6–5.4 Field at Any Distance from
Center-Fed Dipole

L

z

y

I0

s1

s2

P

Ez

r
�

Figure 6–10 Symmetrical center-fed
dipole with sinusoidal current distribution.
The field component Ez at any distance
can be expressed as the sum of three
components radiating from the ends
and the center of the dipole.

The geometry for the field at the point P from a symmet-
rical center-fed dipole of length L with sinusoidal current
distribution is presented in Fig. 6–10. The maximum cur-
rent is I0. It may be shown that the z component of the
electric field at the point P is given by

Ez = −jI0Z

4π

[
e−jβs1

s1
+ e−jβs2

s2
− 2 cos

βL

2

e−jβr

r

]
(7)

The φ component of the magnetic field at the point P

(Fig. 6–10) is given by

Hφ = jI0

4πr sin θ

(
e−jβs1 + e−jβs2 − 2 cos

βL

2
e−jβr

)
(8)

Whereas the other field equations for oscillating dipoles
given in this chapter apply only with the restrictions of
λ � L and r � L, (7) and (8) apply without distance
restrictions.

If P lies on the y axis (θ = 90◦) and the dipole is
λ/2 long, (7) becomes

Ez = I0Z

2πλ

√
1
16 + r2

λ

/
−360◦

√
1

16
+ r2

λ − 90◦ (V m−1) (9)
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and (8) becomes

Hφ = I0

2πr

/
−360◦

√
1

16
+ r2

λ + 90◦ (A m−1) (10)

where

rλ = r/λ

Z = 377 �

I0 = maximum current = terminal current

At a large distance the ratio of Ez as given by (9) to Hφ as given by (10) is

Ez

Hφ

= Z = 377 � = intrinsic impedance (resistance) of space (11)

The magnitude of Hφ is

|Hφ | = I0

2πr
(A m−1) (12)

6–6 Radiation Resistance of λ/2 Antenna

To find the radiation resistance, the Poynting vector is integrated over a large sphere yielding the power
radiated, and this power is then equated to (I0/

√
2)2R0, where R0 is the radiation resistance at a current

maximum point and I0 is the peak value in time of the current at this point. The total power P radiated
was given in (6–4–5)1 in terms of Hφ for a short dipole. In (6–4–5), |Hφ | is the absolute value. Hence, the
corresponding value of Hφ for a linear antenna is obtained from (6–5–2) by putting |j [I0]| = I0. Substituting
this into 6–4–5, we obtain

P = 15I 2
0

π

∫ 2π

0

∫ π

0

{cos[(βL/2) cos θ ] − cos(βL/2)}2

sin θ
dθ dφ (1)

= 30I 2
0

∫ π

0

{cos[(βL/2) cos θ ] − cos(βL/2)}2

sin θ
dθ (2)

Equating the radiated power as given by (2) to I 2
0 R0/2 we have

P = I 2
0 R0

2
(3)

and

R0 = 60
∫ π

0

{cos[(βL/2) cos θ ] − cos(βL/2)}2

sin θ
dθ (4)

where the radiation resistance R0 is referred to the current maximum. In the case of a λ/2 antenna this is at
the center of the antenna or at the terminals of the transmission line (see Fig. 6–7).

1P = ∫∫
S · ds = 1

2
√

μ/ε
∫∫ |Hφ |2 ds
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Proceeding with the evaluation of (4) with the aid of the sine integral, Si(x), and the cosine integral, Cin(x),
it may be shown that the radiation resistance of the λ/2 antenna is

Rr = 30 Cin(2π) = 30 × 2.44 = 73 � (5)

This is the well-known value for the radiation resistance of a thin, linear, center-fed, λ/2 antenna with
sinusoidal current distribution. The terminal impedance also includes some inductive reactance as discussed
in Chap. 18. That is,

Z = 73 + j42.5 � (6)

To make the reactance zero, that is, to make the antenna resonant, requires that the antenna be shorted a few
percent less than λ/2. This shortening also results in a reduction in the value of the radiation resistance to
about 65 �.

6–7 Radiation Resistance at a Point Which is not a Current Maximum

I1

I1
I1
I0

x

Figure 6–11 Relation
of current I1 at
transmission-line
terminals to current I0 at
current maximum.

If we calculate, for example, the radiation resistance of a 3λ/4 antenna
(see Fig. 6–7) by the above method, we obtain its value at a current maximum.
This is not the point at which the transmission line is connected. Neglecting
antenna losses, the value of radiation resistance so obtained is the resistance R0

which would appear at the terminals of a transmission line connected at a current
maximum in the antenna, provided that the current distribution on the antenna is
the same as when it is center-fed as in Fig. 6–7. Since a change of the feed point
from the center of the antenna may change the current distribution, the radiation
resistance R0 is not the value which would be measured on a 3λ/4 antenna or
on any symmetrical antenna whose length is not an odd number of λ/2. How-
ever, R0 can be easily transformed to the value which would appear across the
terminals of the transmission line connected at the center of the antenna.

This may be done by equating (6–6–3) to the power supplied by the transmis-
sion line, given by I 2

1 R1/2, where I1 is the current amplitude at the terminals
and R1 is the radiation resistance at this point (see Fig. 6–11). Thus,

I 2
1

2
R1 = I 2

0

2
R0 (1)

whereR0 is the radiation resistance calculated at the current maximum. Thus, the radiation resistance appearing
at the terminals is

R1 =
(

I0

I1

)2

R0 (2)

The current I1 at a distance x from the nearest current maximum, as shown in Fig. 6–11, is given by

I1 = I0 cos βx (3)

where

I1 = terminal current
I0 = maximum current


