
COMPUTER ORGANIZATION &   

ARCHITECTURE – BEC306C 

MOHAMMED SALEEM, DEPT. OF EC 1 

 

1 

MODULE 2 

Addressing Modes, Assembly Language, Basic Input and Output Operations, Stacks 

and queues, Subroutines, Additional Instructions. 

ADDRESSING MODES  

The different ways for specifying the locations of instruction operands are known as 

addressing modes. A summary is provided in Table 2.1. 

 

Implementation of Variables and Constants: In assembly language, a variable is 

represented by allocating a register or a memory location to hold its value. This 

value can be changed as needed using appropriate instructions. There are two 

addressing modes to access variables. 

Register mode - The operand is the contents of a processor register; the name of the 

register is given in the instruction. 

Absolute mode - The operand is in a memory location; the address of this location is 

given explicitly in the instruction.  



COMPUTER ORGANIZATION &   

ARCHITECTURE – BEC306C 

MOHAMMED SALEEM, DEPT. OF EC 2 

 

2 

Register Mode: The operand is the contents of a register. The name (or address) of 

the register is given in the instruction. Registers are used as temporary storage 

locations where the data in a register are accessed. 

For example: Move R1, R2; Copy content of register R1 into register R2. 

Absolute (Direct) Mode: The operand is in a memory-location. The address of 

memory-location is given explicitly in the instruction. The absolute mode can 

represent global variables in the program. 

For example: Move LOC, R2; Copy content of memory-location LOC into register R2.  

Immediate Mode: The operand is given explicitly in the instruction.  

For example: Move #200, R0; Place the value 200 in register R0. 

Clearly, the immediate mode is only used to specify the value of a source-operand. 

Constant values are used frequently in high level language programs. For 

example: A=B + 6; contains the constant 6. This statement can be compiled as: 

Move B, R1 

Add #6, R1 

Move R1, A 

 Constants are also used in assembly language to increment a counter, test 

for some bit pattern and so on. 

In the addressing modes that follow, the instruction does not give the operand 

or its address explicitly. Instead, it provides information from which an effective 

address (EA) can be derived by the processor when the instruction is executed. The 

effective address is then used to access the operand. 

INDIRECTION AND POINTERS 

Indirect Mode: The effective address of the operand is the contents of a register or 

memory-location that is specified in the instruction. The register (or memory-

location) that contains the address of an operand is called a Pointer. Indirection is 

denoted by placing the name of the register given in the instruction in parentheses 

as illustrated in Figure 2.1 and Table 2.1.  

To execute the Add instruction in fig 2.1(a), the processor uses the value 

which is in register R1, as the EA of the operand. It requests a read operation from 

the memory to read the contents of location B. The value read is the desired operand, 

which the processor adds to the contents of register R0. Indirect addressing through 

a memory-location is also possible as shown in fig 2.1(b). In this case, the processor 



COMPUTER ORGANIZATION &   

ARCHITECTURE – BEC306C 

MOHAMMED SALEEM, DEPT. OF EC 3 

 

3 

first reads the contents of memory-location A, then requests a second read operation 

using the value B as an address to obtain the operand. 

 

Example: Program to add n numbers using indirect addressing mode 

 

INDEXING AND ARRAYS 

Index mode: The effective address of the operand is generated by adding a constant 

value to the contents of a register. The register used in this mode is referred as the 

index register. The index mode symbolically indicated as X (Ri), where X denotes a 

constant signed integer value contained in the instruction and Ri is the name of the 

register involved. The effective address of the operand is given by 

EA = X + [Ri] 



COMPUTER ORGANIZATION &   

ARCHITECTURE – BEC306C 

MOHAMMED SALEEM, DEPT. OF EC 4 

 

4 

Figure 2.13 illustrates two ways of using the Index mode. In Figure 2.13a, the index 

register, R1, contains the address of a memory location, and the value X defines an 

offset (also called a displacement) from this address to the location where the operand 

is found. In Figure 2.13b, the constant X corresponds to a memory address, and the 

contents of the index register define the offset to the operand.  

 

BASIC INPUT/OUTPUT OPERATIONS 

Program Controlled I/O: Consider the problem of moving a character code from 

the keyboard to the processor. Striking a key stores corresponding character code 

in an 8-bit buffer register DATAIN, as shown in Fig. 2.19. To inform the processor 

that a valid character is in DATAIN, a status control flag, SIN is set to 1. A program 

monitors SIN, & when SIN is set to 1, the processor reads the contents of DATAIN. 

When the character is transferred to the processor, SIN is automatically cleared to 

0. If a second character is entered, SIN is again set to 1 and the process repeats. 

A buffer register, DATAOUT, and a status control flag, SOUT, are used for 

transferring a character from the processor to the display. When SOUT equals 1, 

the display is ready to receive a character. Under program control, the processor 

monitors SOUT, and when SOUT is set to 1, the processor transfers a character 

code to DATAOUT. The transfer of a character to DATAOUT clears SOUT to 0; when 

the display device is ready to receive a second character, SOUT is again set to 1.  

The buffer registers DATAIN and DATAOUT and the status flags SIN and 

SOUT are part of circuitry commonly known as a device interface. The circuitry for 

each device is connected to the processor via a bus, as indicated in Figure 2.19. 



COMPUTER ORGANIZATION &   

ARCHITECTURE – BEC306C 

MOHAMMED SALEEM, DEPT. OF EC 5 

 

5 

 

Machine instructions that can check the state of the status flags and transfer 

data between the processor and the I/O device are: 

 READWAIT  Branch to READWAIT if SIN = 0  

Input from DATAIN to R1 

WRITEWAIT  Branch to WRITEWAIT if SOUT = 0 

Output from R1 to DATAOUT 

Memory mapped I/O: Many computers use an arrangement called memory-

mapped I/O in which some memory address values are used to refer to peripheral 

device buffer registers, such as DATAIN and DATAOUT. Thus, no special 

instructions are needed to access the contents of these registers; data can be 

transferred between these registers and the processor using instructions such as 

Move, Load, or Store.  

For example, the contents of the keyboard character buffer DATAIN can be 

transferred to register R1 in the processor by instruction: MoveByte DATAIN, R1. 

Similarly, the contents of register R1 can be transferred to DATAOUT by the 

instruction: MoveByte R1, DATAOUT. 

Assume that bit b3 in registers INSTATUS and OUTSTATUS corresponds to 

SIN and SOUT, respectively. The read operation may be implemented by the 

machine instruction sequence: 

READWAIT  Testbit#3,  INSTATUS 

Branch=0   READWAIT 

MoveByte DATAIN, R1 
The write operation may be implemented as: 

WRITEWAIT  Testbit#3, OUTSTATUS 

Branch=0 WRITEWAIT 

MoveByteR1, DATAOUT 



COMPUTER ORGANIZATION &   

ARCHITECTURE – BEC306C 

MOHAMMED SALEEM, DEPT. OF EC 6 

 

6 

The Testbit instruction tests the state of one bit in the destination location. If 

the bit tested is equal to 0, then the condition of the branch instruction is true, and 

a branch is made to the beginning of the wait loop. When the bit tested becomes 

equal to 1, the data are read from the input buffer or written into the output buffer. 

 

The program shown in Figure 2.20 uses these two operations to read a line of 

characters typed at a keyboard and send them out to a display device. As the 

characters are read in, one by one, they are stored in a data area in the memory and 

then echoed back out to the display. The program finishes when the carriage return 

character, CR, is read, stored, and sent to the display.  

STACKS AND QUEUES  

A stack is a list of data elements, usually words or bytes, with the accessing 

restriction that elements can be added or removed at one end of the list only. This 

end is called the top of the stack, and the other end is called the bottom. The 

structure is sometimes referred to as a pushdown stack. Last-In-First-Out (LIFO) 

stack-the last data item placed on the stack is the first one removed when retrieval 

begins. The terms push and pop are used to describe placing a new item on the stack 

and removing the top item from the stack, respectively.  

Figure 2.21 shows a stack of word data items in the memory of a computer. 

It contains numerical values, with 43 at the bottom and -28 at the top. A processor 

register is used to keep track of the address of the element of the stack that is at 

the top at any given time. This register is called the stack pointer (SP). 



COMPUTER ORGANIZATION &   

ARCHITECTURE – BEC306C 

MOHAMMED SALEEM, DEPT. OF EC 7 

 

7 

 

Assuming a byte-addressable memory with a 32-bit word length, the push 

operation can be implemented as 

Subtract  #4, SP 

Move   NEWITEM, (SP) 

These two instructions move the word from location NEWITEM onto the top of the 

stack, decrementing the stack pointer by 4 before the move.  

The pop operation can be implemented as 

Move   (SP), ITEM 

Add   #4, SP 

These two instructions move the top value from the stack into location ITEM and 

then increment the stack pointer by 4 so that it points to the new top element. 

Fig. 2.22 shows the effect of each of these operations on the stack in Fig. 2.21. 

Using autoincrement and autodecrement addressing mode the push and pop 

operation can be implemented as:  

Move NEWITEM,-(SP) 

Move (SP)+, ITEM 



COMPUTER ORGANIZATION &   

ARCHITECTURE – BEC306C 

MOHAMMED SALEEM, DEPT. OF EC 8 

 

8 

 

Queues: A queue is a list of data elements that works on first-in-first-out (FIFO) 

basis. Data are stored in and retrieved from a queue on a first-in-first-out (FIFO) 

basis. If we assume that the queue grows in the direction of increasing addresses in 

the memory, new data are added at the back (high-address end) and retrieved from 

the front (low-address end) of the queue.  

Differences between Stacks and Queues: 

Stacks Queues 

One end of the stack is fixed (the 

bottom), while the other end rises and 

falls as data are pushed and popped.  

Both ends of a queue move to higher 

addresses as data are added at the back 

and removed from the front.  

A single pointer is needed to point to 

the top of the stack at any given time. 

Two pointers are needed to keep track of 

the two ends of the queue. 

A stack is limited by the top and 

bottom of the stack in the memory. 

A queue would continuously move 

through the memory of a computer in the 

direction of higher addresses. 

SUBROUTINES 

In a given program, it is often necessary to perform a particular subtask many times 

on different data values. Such a subtask is usually called a subroutine. To save 

space, only one copy of the instructions that constitute the subroutine is placed in 



COMPUTER ORGANIZATION &   

ARCHITECTURE – BEC306C 

MOHAMMED SALEEM, DEPT. OF EC 9 

 

9 

the memory, and any program that requires the use of the subroutine simply 

branches to its starting location. When a program branches to a subroutine we say 

that it is calling the subroutine. The instruction that performs this branch operation 

is named a Call instruction. 

After a subroutine has been executed, the calling program must resume 

execution, continuing immediately after the instruction that called the subroutine. 

The subroutine is said to return to the program that called it by executing a Return 

instruction. Since the subroutine may be called from different places in a calling 

program, the location where the calling program resumes execution is the location 

pointed to by the updated PC while the Call instruction is being executed. Hence, 

the contents of the PC must be saved by the Call instruction to enable correct return 

to the calling program. 

The way in which a computer makes it possible to call and return from 

subroutines is referred to as its subroutine linkage method. The simplest subroutine 

linkage method is to save the return address in a specific location, such a register 

called the link register. When the subroutine completes its task, the Return 

instruction returns to the calling program by branching indirectly through the link 

register. 

 

The Call instruction is just a special branch instruction that performs the 

following operations: 



COMPUTER ORGANIZATION &   

ARCHITECTURE – BEC306C 

MOHAMMED SALEEM, DEPT. OF EC 10 

 

10 

 Store the contents of the PC in the link register 

 Branch to the target address specified by the instruction 

The Return instruction is a special branch instruction that performs the 

operation: 

 Branch to the address contained in the link register 

Figure 2.16 illustrates this procedure. 

Subroutine Nesting and the Processor Stack 

Subroutine Nesting means one subroutine calls another subroutine. In this case, 

the return-address of the second call is also stored in the link-register, destroying 

its previous contents. Hence, it is essential to save the contents of the link-register 

in some other location before calling another subroutine. Otherwise, the return-

address of the first subroutine will be lost. 

Subroutine nesting can be carried out to any depth. Eventually, the last 

subroutine called completes its computations and returns to the subroutine that 

called it. The return address needed for this first return is the last one generated in 

the nested call sequence. That is, return addresses are generated and used in a last-

in-first-out order. This suggests that the return addresses associated with 

subroutine calls should be pushed onto a stack. The register stack pointer (SP), is 

used in this operation. The SP points to a stack called the processor stack. The Call 

instruction pushes the contents of the PC onto the processor stack and loads the 

subroutine address into the PC. The Return instruction pops the return address 

from the processor stack into the PC. 

Parameter Passing 

The exchange of information between a calling program and a subroutine is referred 

to as parameter passing. Parameter passing may be accomplished in several ways. 

The parameters may be placed in registers or in memory locations, where they can 

be accessed by the subroutine. Alternatively, the parameters may be placed on the 

processor stack used for saving the return address. 

Figure 2.25 shows how the program for adding a list of numbers can be 

implemented as a subroutine, with the parameters passed through registers. The 

size of the list, n, contained in memory location N, and the address, NUM1, of the 

first number, are passed through registers R1 and R2.  



COMPUTER ORGANIZATION &   

ARCHITECTURE – BEC306C 

MOHAMMED SALEEM, DEPT. OF EC 11 

 

11 

 

If many parameters are involved, there may not be enough general-purpose 

registers available for passing them to the subroutine. Using a stack, on the other 

hand, is highly flexible; a stack can handle a large number of parameters. Figure 

2.26a shows the program of rewritten as a subroutine, LISTADD, which can be 

called by any other program to add a list of numbers.  

 



COMPUTER ORGANIZATION &   

ARCHITECTURE – BEC306C 

MOHAMMED SALEEM, DEPT. OF EC 12 

 

12 

Note the nature of the two parameters, NUM1 and n, passed to the subroutines in 

Figures 2.25 and 2.26. The purpose of the subroutines is to add a list of numbers.  

Instead of passing the actual list entries, the calling program passes the address of 

the first number in the list. This technique is called passing by reference.  

The second parameter is passed by value, that is, the actual number of 

entries, n, is passed to the subroutine. 

 


